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Abstract. We investigate Vassiliev homotopy invariants of string links, and find that in
this particular case, most of the questions left unanswered in [3] can be answered affir-
matively. In particular, Vassiliev invariants classify string links up to homotopy, and all
Vassiliev homotopy string link invariants come from marked surfaces as in [3], using the
same construction that in the case of knots gives the HOMFLY and Kauffman polynomials.
Alongside, the Milnor µ invariants of string links are shown to be Vassiliev invariants, and
it is re-proven, by elementary means, that Vassiliev invariants classify braids.
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1. Introduction

In [22, 23], Vassiliev introduced a particularly simple class V of knot invariants, which
later where shown by the author [1, 2, 3], by Birman and Lin [5, 14], and by Gusarov [8]
to be at least as strong as all the known knot polynomials. Vassiliev has noticed that to
every Vassiliev invariant corresponds a linear functional on some combinatorially defined
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vector space A, and later, Kontsevich (see [3]) has proven that (up tp a minor additional
condition), every linear functional on A comes from a Vassiliev invariant. Furthermore,
Kontsevich found a simple way to associate a linear functional on A to every compact two-
dimensional surface marked in a certain way. Building on this work of Kontsevich, in [3] the
author was able to show that the invariants corresponding to such marked two-dimensional
surfaces are exactly the HOMFLY and Kauffman polynomials, together with all of their
cablings. As of now, the following two questions are still unanswered:

Q1 How strong are Vassiliev invariants? How close do they come to separating knots?
Q2 Do all Vassiliev invariants come from marked surfaces?

The purpose of this paper is to answer these two questions affirmatively for the case of
string links considered up to homotopy. For completeness, let us recall here the definitions
of string links and of homotopies between string links:

Definition 1.1. (Habegger-Lin [9]) Let k be a positive integer, let I be the unit interval
[0, 1], let D be the unit disk, and let {pi}ki=1 be some fixed choice of k points in D. A
k-component string link (or simply a string link) in D × I is a smooth embedding

σ :
k⨿

i=1

Ii → D × I

of k disjoint copies I1, . . . , Ik of the unit interval I in the cylinder D× I, such that σ|Ii(ϵ) =
pi × ϵ for ϵ = 0, 1. Two string links σ0 and σ1 are considered equivalent if there exists a one
parameter family σt of string links interpolating between them; in other words, if one can
get from one to the other via a sequence of Reidemeister moves preserving the endpoints
{pi} × {0, 1} (see e.g. [11]). Two string links σ0 and σ1 are called homotopic if there exists
an end-point preserving homotopy σt between the maps σ0 and σ1, along which the images
of the Ii’s are always disjoint (however, for any given t and i the map σt|Ii is not required
to be injective, namely, strands of the string link are allowed to self-intersect freely during a
homotopy). Normally we will associate a color υi to each of the points pi, and hence to each
of the strands of a string link σ. See figure 1.

green

red

p2p1

I

D

Figure 1. Three inequivalent 2-component string links. The first two are homotopic to each

other, while the third is not homotopic to any of the first two.

While answering questions Q1 and Q2 for homotopy string links, we will also find that:

• Vassiliev invariants separate braids.
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• The Milnor µ invariants (see e.g. Milnor [17, 18] and Habegger-Lin [9]) are Vassiliev
invariants (see also Lin [15]), coming from the same single uniform construction as
the HOMFLY and Kauffman polynomials.

2. Vassiliev invariants of string links

2.1. A brief review of [3]. Let us briefly recall the main results of [3]1. In [3], the following
vector spaces (over some ground field F of characteristic 0) and linear maps were considered
at length:

(1)

K V ∗
−→
1-1?
Ā ⊃ A χ̄←→̄

σ
B Φ−→

1-1?
M

K∗ ⊃ V Wm←→
V
W ⊂
← A

∗ χ̄∗
←→
σ̄∗
B∗ Φ∗
←−
onto?
M∗

In the above two diagrams,

• K is the vector space freely generated by all oriented knots in the oriented Euclidean
space R3, and K∗ is its dual, the space of all F-valued knot invariants.
• V is a certain subspace of K∗, containing the so-called “Vassiliev knot invariants”.
V is a filtered vector space, with the type m subspace FmV being the space of all
invariants vanishing on knots having more than m self-intersections; recall that any
knot invariant V can be extended to knots with self-intersections via the formula

(2) V
( )

= V
( )

− V
( )

.

This formula can be thought of as analogous to differentiation, and Vassiliev invari-
ants of type m can be thought of as invariants whose (m+ 1)st derivative vanishes.
• A is the quotient space of the graded space Dl of all linear diagrams by the subspace
spanned by all STU relations. A linear diagram is a diagram made of a single directed
full line, some dashed arcs some of whose ends are on the full line, and some oriented
trivalent vertices in which three dashed lines meet. The STU relation is the relation

UTS

.

One can show that the following two relations also hold in A:

AS : 0 IHX : .

• Ā is the graded completion of A, A∗ is the graded dual of A, and W is a certain
subspace of A∗, from which A∗ can be easily reconstructed. There is a naturally
defined projection A∗ →W .
• The mapWm is the analogue of computing the (constant)mth derivative of a Vassiliev
invariant of type m, and is defined only on FmV . V is the much harder operation of
“integration”, and presently it can only be defined via transcendental methods (via
Chern-Simons theory or using the Knizhnik-Zamolodchikov connection). V ∗ was not
considered in [3], but can easily be defined as the adjoint of V . A pivotal question in

1It is a good idea to have a copy of [3] around while reading this paper.
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this context is whether the map V ∗ is one-to-one, or, equivalently, whether Vassiliev
invariants are fine enough to separate all knots.
• A is a Hopf algebra: its (commutative!) product is defined by juxtaposition, while
the (commutative) product on A∗ is inherited from the obvious product on knot
invariants in V .
• The space B is the quotient space of the graded space C of all “Chinese characters”
by the subspace spanned by all AS and IHX relations. A Chinese character is a
diagram made of the same ingredients as the diagrams in Dl, only that the directed
full line is replaced by some number of univalent vertices. A and B are isomorphic
by an analogue of the Poincare-Birkhoff-Witt (PBW) theorem.
• M is the vector space spanned by all marked surfaces. A marked surface is a com-
pact two dimensional smooth surface with a choice of finitely many tangents to its
boundary, regarded up to a diffeomorphism. The map Φ is the composition of two
maps: the marking map µ defined by the relation

,

and the thickening map defined by the figure

.

• The image ofM∗ in K∗ is the space of knot invariants coming from the HOMFLY [10]
and Kauffman [12] polynomials and all of their cablings. A second pivotal question in
this context is whether the map Φ is one-to-one. Indeed, Φ is injective iff the class of
Vassiliev invariants is precisely as strong as the HOMFLY and Kauffman polynomials
and all of their cablings.
• The spaces above are all graded (or filtered) in compatible ways. For more specific
information about their gradings, consult e.g. [3].

2.2. Vassiliev invariants of string links. Let us fix the number k of strands in a string
links, as well as a list of colors Υ = {red, green, . . . , cyan} for these strands. The reader
should have little difficulty convincing herself that in the case of string links, diagram (1) is
replaced by

(3)

Ksl V sl∗
−→
1-1?
Āsl ⊃ Asl χ̄sl

←→
σ̄sl
Bsl Φsl

−→
1-1?
Msl

Ksl∗ ⊃ Vsl W sl
m←→

V sl
Wsl ⊂

← A
sl∗ χ̄sl∗
←→
σ̄sl∗
Bsl∗ Φsl∗
←−
onto?
Msl∗

The main points to notice are:

• Ksl is now spanned by all string links.
• Vassiliev invariants are defined in exactly the same way, using (2). Vsl is the space
of Vassiliev invariants. It is a filtered space, and its type m subspace is denoted by
FmVsl.
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• Asl is the space of diagrams like

cyanmagentabluegreenred

,

divided by the same STU relations as before. Notice that the full lines in these
diagrams are colored by (all of) the colors in Υ, and that in Asl we consider only
diagrams that do not have connected components made only of dashed arcs. As in
the case of knots, the AS and IHX relations hold in Asl. Asl is graded by half the
number of trivalent vertices in a diagram; the diagram shown above is of degree 4.
• Āsl is the graded completion of Asl and Asl∗ is the graded dual of Asl. Wsl is the
space of all linear functionals on Asl which vanish on all diagrams having an arc
whose endpoints are both on the same colored line and are not separated by an
endpoint of any other arc. As in the case of knots, there is a naturally defined map
W sl

m : FmVsl →Wsl.
• Like A, Asl is a (co-commutative but not commutative) Hopf algebra. Furthermore,
Asl is an A-module and A-co-module in k different ways, one way for each of the
colors in Υ. For example, if D and Dsl are diagrams representing classes in A and
Asl respectively, then the ‘blue product’ D ×

blue
Dsl is defined by cutting the blue line

of Dsl somewhere, and inserting D into that cut. It is easy to verify that modulo
STU , AS and IHX, the result is independent of the choice of the cutting point. The
‘blue co-product’ is inherited from the blue product ×

blue
: V ⊗ Vsl → Vsl defined as

follows: if σ is a string link and V and V sl are invariants in V and Vsl respectively,
then

(V ×
blue

V sl)(σ) = V (σblue)V
sl(σ),

where σblue is the closure of the blue strand of σ into a knot.
• An “integration” map V sl :Wsl → Vsl can be defined as in [3]. The main difference is
that the “correction” procedure now is a little more complicated — instead of multi-

plying by Z(∞)1−
c
2 , here we have to multiply using the red product by Z(∞)1−

c(red)
2 ,

using the green product by Z(∞)1−
c(green)

2 , etc.
• A map Asl∗ →Wsl can be defined using the A-module and A-co-module structures
of Asl, in a way similar to the definition of the map A∗ →W .
• The space Bsl is defined as B, only that each univalent vertex in a diagram in Bsl is
colored by a color in Υ (color repetitions are allowed, and not all colors need to be
used in any specific diagram). Bsl is isomorphic to Asl, and the isomorphism χ̄sl as
well as its inverse σ̄sl are defined as in [3], only that the summation in the definition
of χ̄sl as well as the “uniformization” in the definition of σ̄sl should be carried in each
color separately.
• Msl is defined asM, only that the markings of a surface M ∈Msl are colored. The
map Φsl : Bsl →Msl is the obvious “coloring” of the map Φ : B →M.
• The above spaces are all graded or filtered. Their gradations (filtrations) are the
obvious generalizations of the gradations (filtrations) of the spaces in (3).
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3. Vassiliev homotopy string link invariants

The purpose of this section is to describe the analogs of the maps (1) and (3) for the case
of Vassiliev homotopy string link invariants, namely, for the case of Vassiliev invariants of
string links which do not change when an undercrossing in which both strands are of the
same color (a boring undercrossing) is changed to become an overcrossing. The map for
Vassiliev homotopy string link invariants is:

(4)

Khsl V
hsl∗
−→
1-1!
Āhsl ⊃ Ahsl χ̄hsl←→

σ̄hsl
Bhsl Φhsl−→

1-1!
Mhsl

Khsl∗ ⊃ Vhsl Whsl
m←→

V hsl
Whsl = Ahsl∗ χ̄hsl∗←→

σ̄hsl∗
Bhsl∗ Φhsl∗←−

onto!
Mhsl∗

Where

• Khsl is the space spanned by all string links, considered up to homotopy.
• The space Vhsl of Vassiliev homotopy invariants is defined in the usual way.
• Ahsl is Asl with the further relation imposed that a diagram that has an arc both
of whose ends are connected to the same full line is equal to 0. (Such arcs will be
referred to as boring). Āhsl is the graded completion of Ahsl.
• W hsl

m is the restriction of W sl
m to FmVhsl.

• Whsl is just the dual ofAhsl. The only place in this section where homotopy invariance
is used is here, in showing the rather simple fact that the image of W hsl

m is contained
in Whsl.
• Bhsl is the quotient of Bsl by the subspace spanned by all non-forests, i.e. by all
diagrams whose first homology is non-trivial, and by all boring diagrams — diagrams
that have two (or more) univalent vertices on the same component and colored by
the same color. Clearly, Bhsl is isomorphic to the space spanned by interesting (i.e.
non-boring) forests.
• Mhsl is the subspace ofMsl spanned by disjoint unions of interesting disks — where
an interesting disk is defined to be a disk whose markings are of distinct colors.
• All spaces above inherit gradations (or filtrations) from the corresponding spaces in
(3).

The only non-obvious things to check are that the isomorphism Asl ↔ Bsl descends to
an isomorphism Ahsl ↔ Bhsl, and that the map Φhsl : Bhsl →Mhsl (whose definition is the
obvious one) is one-to-one.

Theorem 1. The isomorphism Asl ↔ Bsl descends to an isomorphism Ahsl ↔ Bhsl.

Proof. First, let us show that relations in Bhsl are mapped into relations in Ahsl by the
isomorphism χ̄sl : Bsl → Asl. Recall that if C is a diagram in Bsl, χ̄sl(C) is the sum of all
possible ways of arranging all the υ-colored univalent vertices in C along υ-colored directed
full lines, for all colors υ ∈ Υ. There are two types of (additional) relations in Bsl:
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Boring diagrams: Such diagrams are mapped by χ̄sl(C) to combinations of diagrams
having subdiagrams that look like

blue

· · ·

· · ·

· · · ...
... · · ·

· · ·

· · ·2

6 5

3

4

1

Apply the STU relation near the arc 1, regarding the displayed diagram as an S diagram.
In the result, T + (−U), in each of the summands arc 2 is connected to the blue line. Again
apply the STU relation in the same manner near arc 2 in each of the summands. The result
is a larger signed sum in each of whose terms the STU relation can be applied near arc 3.
Keep applying the STU relation until you reach arc 6. In each of the resulting summands
arc 6 is boring, and thus χ̄sl(C) = 0 in Ahsl.

Diagrams with non-trivial first homology: Such diagrams are mapped by χ̄sl(C) to com-
binations of diagrams having subdiagrams that look like

blue

1

2 3

Apply the STU relation to arcs 1, 2, and 3 in sequence as before, and you get back to the
previous case.

Next, let us show that relations in Ahsl are mapped into relations in Bhsl by the inverse
isomorphism σ̄sl : Asl → Bsl. Recall that if D is a diagram in Asl, σ̄sl(D) is a certain linear
combination of diagrams obtained from D by first applying to D some sequences of ‘basic
operations’, and then erasing the full lines in the resulting diagrams. Recall also the two
kinds of basic operations used:

U :

blue blue

; S :

blue blue

Given D ∈ Asl, let DCC be the diagram D with the full lines removed. It is clear that the
property “DCC is a relation in Bhsl” of a diagram D is preserved by the operations U and
S, and that diagrams that have a boring arc have this property. □

Theorem 2. The map Φhsl : Bhsl →Mhsl is one-to-one.

Proof. Clearly, it is sufficient to prove the theorem for connected diagrams, and we might
as well restrict our attention to diagrams whose univalent vertices are in a bijective corre-
spondence with the colors in Υ. Let Bres denote the corresponding subspace of Bhsl. The
corresponding restricted class of surfaces,Mres, is the class of disks whose markings are in
bijective correspondence with the colors in Υ. Let us pick one of the colors in Υ, say “red”.
With that choice, the diagrams in Bres are just binary trees with colored leaves (modulo the
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IHX relation), and there is an injective map RL : Bres → FL(Υ− red) of Bres into the free
lie algebra FL(Υ− red) generated by the colors in Υ other than red:

red

bg

m

RL−→ [[g, b],m].

(RL is well defined because the IHX relation maps to the Jacobi identity in FL(Υ − red)
and the AS relation maps to the antisymmetry of the bracket. It is injective because the
images of the IHX and AS relations are all the relations in FL(Υ− red) which involve only
‘interesting’ Lie monomials). Similarly, there is a map RA :Mres → FA(Υ − red) ofMres

into the free associative algebra FA(Υ− red) generated by Υ− red:

red

g

b

m
RA−→ (−g) · b · (−m).

(Notice that the direction of the red marking is used to determine the order of g, b, and m,
and that we took each marking whose orientation was opposite to that of the red marking
with a minus sign).

The theorem now follows from the injectivity of RL and of the natural map i : FL→ FA
of the free Lie algebra FL into its universal enveloping algebra FA, and from the easily
established commutativity of the diagram

Bres 21−kΦhsl−−−−−→ Mres

RL

y yRA

FL(Υ− red)
i−−−→ FA(Υ− red)

(The injectivity of i is proven e.g. in [16, theorem 5.9]). □

Theorem 3. Bhsl (and hence Ahsl) is a polynomial algebra over a graded vector space Phsl

whose degree m homogeneous subspace GmPhsl is of dimension
(

k
m+1

)
(m−1)! for 1 ≤ m < k,

and of dimension 0 otherwise.

Proof. The theorem follows from the following three assertions:

(1) Phsl can be taken to be the subspace of Bhsl spanned by connected diagrams, i.e. by
trees.

(2) A tree of degree m in Phsl is a tree with m+1 leafs colored by m+1 different colors
from Υ.

(3) The subspace PΥ0 of Phsl spanned by trees whose m + 1 leafs are colored by the
colors in some fixed subset Υ0 of Υ is of dimension (m− 1)! when 1 ≤ m < k, and of
dimension 0 otherwise.

Assertion 1 follows using the same reasoning as in [3]. Assertion 2 is trivial from the
definition of the grading of Bhsl. Let us prove assertion 3. It is easy to check that if m < 1
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or m ≥ k then GmPΥ0 is empty. Let 1 ≤ m < k, let us fix a subset Υ0 of order m+ 1 of Υ,
and let us assume, without loss of generality, that the colors red and cyan are in Υ0. Let P
be the set of all diagrams of the form

C(πi) =
red cyan

· · ·
π1 πm−1

; {πi} = Υ0 − {red, cyan}.

The elements of P are linearly independent in PΥ0: Let (πi) and (π̄i) be colors so that
{π̄i} = {πi} = Υ0 − {red, cyan}, and let M(π̄i) be a disk whose boundary is marked by
m + 1 tangents of consistent orientations and whose colors are of the same cyclic order as
(red, π̄1, . . . , π̄m−1, cyan). It is easy to verify that the coefficient of M(π̄i) in Φhsl(C(πi)) is 2 if
(πi) = (π̄i) and 0 otherwise, and this proves the linear independence of the elements of P .

P spans GmPΥ0: Let C be a diagram representing a class in GmPΥ0 , and let l be the path
in C connecting the red univalent vertex with the cyan univalent vertex. If l is of maximal
length, then by AS relations C is equivalent up to a sign to a diagram in P . Otherwise,
use the IHX relation as in the figure below to show that C is equivalent to a difference of
diagrams whose l’s are longer:

· · · · · · cyanred
... ...

...

...

cyanred
... ...

...

...

cyanred
... ...

...

...
· · · · · · · · · · · ·

□

Remark 3.1. It was the computation of the dimension of GmPhsl that first suggested to the
author that the Milnor µ invariants are Vassiliev invariants, as will be shown in section 5.
Indeed, it is shown in [17, 18, 9] that the number of µ invariants is given by a similar formula.

4. Vassiliev invariants classify braids

4.1. Braids. Recall (e.g. [4]) that a k-braid B is an object that looks something like:

(5)

D1

green
D0bluered

red greenblue 

More formally, B is a class in the fundamental group of
{(z1, . . . , zk) ∈ Dk : zi = zj ⇒ i = j}/Sk,

where Sk is the group of permutations of k letters with
its natural action on Dk. We choose the class of some
fixed sequence (z̄1, . . . , z̄k) ∈ Dk as a base point, and
associate colors in the set Υ = {υi} = {red, . . .} to each
of the z̄i’s.


Clearly, the complement of the braid in D× I deformation retracts to the complement D0

of the endpoints of the braid in D × {0}, as well as to the complement D1 of the endpoints
of the braid in D × {1}. The fundamental group π1(D0) of D0 can be identified with the
free group F (Υ) generated by the set Υ. Identifying π1(D1) in the same way, we get the
following isomorphisms:

(6) F (Υ) ≃ π1(D0) ≃ π1(D × I −B) ≃ π1(D1) ≃ F (Υ).

Composing these isomorphisms from left to right, we see that to every pure braid B corre-
sponds an automorphism ξB of the free group F (Υ). Artin’s theorem (see e.g. [4, pp. 25])
says that, in fact, the braid B can be reconstructed from the automorphism ξB.
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Let P (Υ) be the ring of formal power series with rational coefficients in the non-commutative
variables {ῡi}. Recall that the Magnus expansion (see [16]) is the injective ring homomor-
phism ζ : F (Υ) → P (Υ) defined by2 ζ(υi) = exp(ῡi/2) and by ζ(υ−1

i ) = exp(−ῡi/2). Let
Πm : P (Υ) → GmP (Υ) be the projection to the degree m subspace GmP (Υ) of P (Υ). The
following two propositions prove the assertion in the title of this section — that Vassiliev
invariants are sufficient to separate braids:

Proposition 4.1. A braid B is determined by the elements (ζ(ξB(υ)))υ∈Υ of P (Υ).

Proof. Follows immediately from Artin’s theorem and the injectivity of ζ. □
Proposition 4.2. For any υ ∈ Υ, B 7→ Πmζ(ξB(υ)) is a Vassiliev invariant of type m − 1
(using the obvious definition of GmP (Υ)-valued Vassiliev invariants of braids).

Remark 4.3. Kohno in [13] used deep results from algebraic geometry to prove that a certain
class of invariants, constructed via an analog of the Knizhnik-Zamolodchikov connection,
is strong enough to classify braids. Invariants coming from the Knizhnik-Zamolodchikov
connection are always of finite type, and so his result implies ours. However, the proof
presented here is considerably simpler and its generalizations in the case of string links
are essentially obvious. Furthermore, it appears likely that with relatively little additional
effort enough combinatorial information can be deduced from our line of thought to answer
problems like problem 6.2.

4.1.1. The Wirtinger presentation. To prove proposition 4.2, we first need to understand ξB
better, or, in other words, to understand π1(D × I −B) better. Let us recall the Wirtinger
presentation (see e.g. [20]) of the fundamental group of the complement Kc of any “knotty”
object K (a knot, link, braid, string link, . . .) in R3 (or a contractible subset thereof).
According to the Wirtinger presentation, π1(K

c) has one generator for each arc segment l
in a planar projection of K, denoted by an arrow γl crossing under l (to be thought of as
a loop beginning at a base point above the plane, reaching the tail of γl by a straight line,
following γl, and returning on a straight line to the basepoint). It is convenient to choose all
arrows along any single strand of K to have consistent orientations, and than the relations
among the γl’s in π1(K

c) can be read from the crossings of K as follows:

(7)
β

α
γ

δ

−→ α = β
γ = βδα−1(= δ↑ι(β)) ;

β

α
γ

δ

−→ α = γ−1βδ(= β↑δ)
γ = δ

,

where in a group α↑β def
= αβ = β−1αβ and ι(α)

def
= α−1.

For example, the fundamental group of the complement of the trefoil knot in R3 is com-
puted as follows:

α
β

γ

−→ ⟨α, β, γ|α = β↑γ, β = γ↑α, γ = α↑β⟩.

2Our definition of ζ is different than the standard one, which is ζ(υi) = 1+ ῡi; ζ(υ
−1
i ) = 1− ῡi + ῡ2

i − . . ..
We feel that in a subject neighboring the subject of quantum groups [6, 21], ours would be the better
definition in the long run.
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4.1.2. Understanding ξB(υ). It is now rather simple to understand how ξB works. To com-
pute ξB(υ), start from the generator of π1(D × I − B) that corresponds to υ — an arrow
passing under the very bottom of the strand whose lower end is the point of color υ. Then
‘slide’ this generator upward, while occasionally conjugating it by some other generator (or
its inverse), as dictated by the relations (7). Then slide the conjugators upward using the
same procedure, and then the conjugators of the conjugators, . . .. As the right hand sides of
the relations 7 only involve generators that are higher up along the braid than the left hand
sides, this process will terminate. More formally, we can describe this process as follows:

(8)

• Write an arrow, marked by a greek letter, under each arc segment in
a planar projection of B. For the arc segments on the first strand of
the braid use the letters α0, . . . , αnα = α, for the second strand use
β0, . . . , βnβ

= β, etc.
• Start from the generator υ, say β0 according to the new marking, and
repeatedly apply (7) replacing left-hand-sides by right-hand-sides until
you get an expression for β0 in terms of α, β, . . .. This expression is the
sought after ξB(υ).

For example, consider υ = β0 in the case of the braid given
in (5):

β0 → β1 → β2↑γ2 = β↑γ.

α2=αγ2=γ

β1

α1

γ0β0

γ1

α0

β2=β

4.1.3. Idea of the proof. The idea of the proof of proposition 4.2 is simple: looking at (7) we
see that a double point corresponds to the difference between conjugating and not conjugat-
ing. Such a difference between, say, α↑β and α vanishes if either α = e or β = e where e is
the identity element of a group, thus the Magnus expansion of such a difference is divisible
by both α and β and hence it cannot have terms of degree less than 2. (Indeed, the lowest
degree term in ζ(α↑β)− ζ(α) is [ᾱ, β̄], which is of degree 2). Having more double points in
B should then mean that the lowest degree term in ξB(υ) is of a higher and higher degree.
The rather messy details of this simple idea are shown in the following section.

4.2. Braids with double points. Fixing a color υ, it is clear that one can use (2) to extend
ξB(υ) to be defined on braids B that are allowed to have double points, provided that we
allow ξB(υ) to take values in the group ring ZF(Υ) of the free group F (Υ). Being a little more
specific, say that B has exactly m double points and mark them by the integers 1, . . . ,m.
Define a new (and not too interesting) operation ↓ : F (Υ) × F (Υ) → F (Υ) by α↓β = α.
Introduce new “meta-operations” Ci, 1 ≤ i ≤ m on F (Υ) to be assigned a meaning shortly,
and add two new rules to the rules in (7):

(9)
β

α
γ

δ
i −→ α→ β(Ci)

opδ
γ → δCiι(β)

.

(
(Ci)

op will also be
assigned a

meaning shortly

)
11



Claim 4.4. Let ξ̄B(υ) denote the result of the procedure (8) supplemented by the additional
rule (9) applied to the braid B beginning from the generator υ. Then

ξB(υ) =
∑

(Ci)∈{↑,↓}m
(−1)|{i:Ci=↓}| · ξ̄B(υ).

(
where

(↑)op := ↓ and
(↓)op := ↑

)

(Notice that in the above sum whenever ξ̄B(υ) is evaluated the meta-operations Ci (as well
as their opposites (Ci)

op) are assigned a definite meaning, which is either ↑ or ↓). □

Let us assume that in the formal expression ξ̄B(υ) the meta-operation Ci appears ni

times. Introduce new meta-operations Cj
i , 1 ≤ i ≤ m; 1 ≤ j ≤ ni, and let T be the formal

expression obtained from ξ̄B(υ) by replacing the jth occurrence of Ci in ξ̄B(υ) by Cj
i , for all

i and j in the range 1 ≤ i ≤ m; 1 ≤ j ≤ ni. Let H by the hypercube
∏

i[0, ni) in Rm, and
let H̄ be its closure3. For an integer point p = (pi) ∈ Zm ∩ H̄ set

Tp =

(
T with all Cj

i ’s replaced by

{
↑ if j ≤ pi,

↓ otherwise

)
and for p ∈ Zm ∩H let

T (p) =
∑

ϵ=(ϵi)∈{0,1}m
(−1)

∑
ϵi · Tp+ϵ.

Clearly, the previous claim just says that ξB(υ) is equal to the alternating sum of the values
of Tp on the corners of H̄. With this in mind, the following lemma is just an m-dimensional
generalization of the notion of “a telescopic sum”:

Lemma 4.5. ξB(υ) =
∑

p∈Zm∩H T (p). □

4.2.1. Proof of proposition 4.2. Using the above lemma, we see that it is sufficient to prove
that ΠmζT (p) = 0 for each p ∈ Zm∩H. Fix such a p once and for all. Extend the operations
↑ and ↓ to bilinear4 operations on ZF(Υ), and the operation ι to a linear5 operation on
ZF(Υ). Define ∗ : ZF (Υ) ⊗ ZF(Υ) → ZF(Υ) to be the bilinear extension of the operation
(α, β) 7→ α↑β − α↓β defined on F (Υ)× F (Υ), and set (∗)op = (−∗). Let

T ∗(p) =

T with all Cj
i ’s replaced by


↑ if j ≤ pi,

∗ if j = pi + 1,

↓ otherwise

 .

Lemma 4.6. T ∗(p) = T (p). □

For a subset A ⊂ Υ of Υ, let ΠA : F (Υ)→ F (Υ−A) be the natural projection map that
maps all the members of A to the identity element e of F (Υ−A), and use the same symbol
ΠA to denote the linear extension of ΠA to a projection ΠA : ZF(Υ)→ ZF(Υ− A).

3The rest of this section doesn’t make much sense if ni = 0 for some i. In that case, however, ξB(υ) = 0
and there is nothing to prove.

4This is a rather non-standard construction; we define α↑(β+γ) = α↑β+α↑γ ̸= (β+γ)−1α(β+γ). (The
latter possibility does not even make sense as β + γ is, in general, not invertible).

5So ι(7α) = 7ι(α) ̸= (7α)−1.
12



Lemma 4.7. Let E be any formula made of the operations ι, ↑, ↓, and ∗ and of the generators
Υ of ZF(Υ) which involves each such generator at most once. Assume that the number m of
times that the operation ∗ appears in E is positive. Then there exist m+1 disjoint non-empty
subsets {Ai}m+1

i=1 of Υ for which ΠAi
(E) = 0.

Assuming the lemma, the proof of the vanishing of ΠmζT (p) = ΠmζT
∗(p) is short. First

notice that setting E = T ∗(p), the operation ∗ appears precisely m times in E. If E involves
each generator of F (Υ) at most once, the lemma shows that there are m + 1 projections
Π̄Ai

: P (Υ)→ P (Υ−A) (whose obvious definitions are left as an exercise for the reader) for
which Π̄Ai

(T ∗(p)) = 0. This implies that each monomial in ζ(T ∗(p)) contains at least one
variable from each of the Ai’s, and is therefore at least of degree m + 1. This shows that
Πmζ(T

∗(p)) = 0. Having repetitions among the generators appearing in E is just the same as
considering a ‘lifting’ Ẽ of E to a formula in which there are no repeating variables, and then
imposing some (equality) relations among the variables appearing in Ẽ. But if something
(Πmζ(Ẽ)) vanishes, it vanishes no matter how many further relations are imposed. □
4.2.2. Proof of lemma 4.7. The proof is by induction on the structure of E.
Case 1: E is a generator of F (Υ). In this case there is nothing to prove.
Case 2: E = ι(E1). If {A1

i } are the subsets of Υ corresponding to E1 by the induction
hypothesis, simply set Ai = A1

i .
Case 3: E = E1↑E2 or E = E1↓E2, with Ej having mj ∗’s. If m1 = m2 = 0, there is

nothing to prove. Otherwise let {Ai} = {A1
i } ∪ {A2

i } (where if mj = 0, {Aj
i} is understood

to be the empty collection), and use the linearity of ↑ and ↓. Observe that if both mj’s
are positive, we have m1 + m2 + 2 sets Ai, which is one more than the required number
m+ 1 = m1 +m2 + 1.
Case 4: E = E1 ∗ E2, with Ej having mj ∗’s. If m1 = m2 = 0, take Ai = {all generators
appearing in Ei}, and use the facts that e↑a− e↓a = ea − e = 0 and a↑e− a↓e = ae − a = 0
for any a ∈ F (Υ). If both mj’s are positive, use the same construction and the same
observation as in the previous case. If m1 > 0 and m2 = 0, set Ai = A1

i for i ≤ m and
Am+1 = {all generators appearing in E2}, and if m1 = 0 and m2 > 0, set Ai = A2

i for i ≤ m
and Am+1 = {all generators appearing in E1}. □

5. On the Milnor invariants

5.1. Vassiliev invariants classify string links up to homotopy. Let us try to naively
imitate the procedure of (8) in the case of a string link σ:

(10)

α0 β0 γ0

γ1

γ2=γα4=α β2=β

β1 α1 α2

α3

β0 → β1↑γ1
β1 → β↑ι(α0)
α0 → α1↑γ
α1 → α2↑ι(γ1)
γ1 → γ↑β1

β1 → ?
...

We find ourselves stuck in an infinite loop. There are several ways out, though. The simplest
of these is to declare that all the conjugates of β0 commute. This done, notice that in

13



computing ξσ(β0) all the intermediate results are conjugates of β0 and therefore conjugating
such an intermediate result by a conjugate of β0, say β1, is superfluous and the above infinite
loop can be avoided. This simple-minded argument can be enhanced to a complete proof of
the following theorem, first proven by Milnor [17] (for a proof somewhat different from the
one hinted here, see [9]):

Definition 5.1. (Habegger-Lin [9]) If G is a group normally generated by x1, . . . , xk, set

RG = G /⟨[xi↑g1, xi↑g2] : g1,2 ∈ G⟩ .
Theorem 4. The inclusions D0 ↪→ D × I − σ ←↩ D1 (see (6)) induce isomorphisms

RF (Υ) ≃ Rπ1(D0) ≃ Rπ1(D × I − σ) ≃ Rπ1(D1) ≃ RF (Υ).

Let Rξσ be the left to right composition of these isomorphism.

Proposition 5.2. The Magnus expansion ζ : F (Υ) → P (Υ) descends to an injection Rζ :
RF (Υ) → RP (Υ), where RP (Υ) is obtained from RP (Υ) by setting all boring monomials,
monomials in which any generator appears more than once, to be equal to 0. □
Theorem 5. σ 7→ ΠmRζ(Rξσ(υ)) is a Vassiliev invariant of type m− 1 for every υ ∈ Υ.

Proof. Simply observe that the same procedure (8) for computing ξσ(υ) works here just as
well, provided that when working your way up σ, you ignore every conjugator that corre-
sponds to a strand of σ which is being visited for the second time in the current branch of
the computation tree. The result is a formula for Rξσ(υ) of the same type as in the proof of
proposition 4.2, and exactly the same proof as there works here as well. □

It is rather clear that Rξσ is, in fact, a homotopy invariant of σ: Say there is an overcrossing
in σ in which only one strand of σ, say the one marked by γi, is involved. Notice that all the
γi’s are conjugate to each other, and therefore they all commute in Rπ1(D×I−σ). Thus the
rules corresponding to this overcrossing are both trivial, and equal to the rules that would
apply had it been an undercrossing:

γi
γj

γi+1γj+1

−→ γi = γi+1

γj = γj+1↑ι(γi+1) = γj+1

Theorem 6. (Habegger-Lin [9]) Rξσ determines σ up to homotopy.

Thus we see that Vassiliev invariants classify string links up to homotopy.

5.2. The Milnor µ invariants. The invariants considered in the previous section, σ 7→
ΠmRζ(Rξσ(υ)), are not quite the Milnor µ invariants of string links, but they are close
relatives. It is easy to see from, say, (8) that for any υ, Rξσ(υ) is a conjugate of υ. The µ
invariants (without repeating indices) are just the coefficients of the Magnus expansion of
a particular member µυ of RF (Υ) for which Rξσ(υ) = υ↑µυ: the image via Rπ1(D × I −
σ) → RF (Υ) of any parallel of the strand υ. This image can be computed using the same
techniques ((8) and (9)) as before, and so our proof also shows that those Milnor µ invariants
are Vassiliev invariants.

Remark 5.3. Notice that the above result, together with the results of section 3, show that the
(no-repeating-indices) Milnor µ invariants come from the same single uniform construction
as the HOMFLY and Kauffman polynomials.

14



5.3. Some more Milnor µ invariants. There is a second way, also discovered by Milnor,
to break out of the infinite loop of (10). Define the depth of a term υ appearing in a formula
E made of constants and the operations ↑, ↓, and ι, to be 1 plus the number of ↑s and ↓s in
E whose right-hand scope6 includes υ. Notice that the problem in (10) occurs at higher and
higher depths, and so if high depths are declared irrelevant, the problem is removed. More
precisely, for a group G recall that the qth term Gq in the lower central series of G is defined
recursively by

G1 = G; Gq+1 = [G,Gq],

(
where [g, h] := h−1ghg−1 = (g↑h)g−1

is an equivalent but non-standard
definition for the commutator.

)
and that the qth nilpotent quotient RqG of G is G/Gq.

The following proposition is well known, but I could not find it formulated in this form in
the literature. For completeness, I’ve included a brief proof.

Proposition 5.4. Let E be a formula made of constants and the operations ↑, ↓, and ι.
When E is evaluated in RqG, the result is independent of the terms in E whose depth is q
or higher.

Proof. Set ⇑(α) = α, ⇑(α1, . . . , αq) = α1↑⇑(α2, . . . , αq), and

Q(α1, . . . , αq) = ⇑(α1, . . . , αq)⇑(α1, . . . , αq−1)
−1.

To prove the proposition, it is sufficient to show that Q(α1, . . . , αq) ∈ Gq. The first two cases
are:

Q(α, β) = (α↑β)α−1 = [α, β],

Q(α, β, γ) = (α↑(β↑γ))(α↑β)−1 = [α, [β, γ]]↑β = [α,Q(β, γ)]↑⇑(β).
The general case follows using induction and

Q(α1, . . . , αq) = [α1, Q(α2, . . . , αq)]↑⇑(α2, . . . , αq−1).

□
From this point, the discussion proceeds as in sections 5.1 and 5.2. The above proposition

is used to show that when restricting to Rqπ1(D× I −σ), the procedure (8) may be stopped
whenever the depth exceeds q, and therefore it always terminates. This allows one to define
inverses to the natural maps Rqπ1(D0) → Rqπ1(D × I − σ) ← Rqπ1(D1) and hence get a
chain of isomorphisms (for a different approach see e.g. [9]):

RqF (Υ) ≃ Rqπ1(D0) ≃ Rqπ1(D × I − σ) ≃ Rqπ1(D1) ≃ RqF (Υ).

Composing the resulting automorphism Rqξσ of RqF (Υ) with the reduced Magnus expan-
sion Rqζ, we get RqP (Υ)-valued invariants, where RqP (Υ) is obtained from P (Υ) by setting
all monomials of degrees ≥ q in P (Υ) to be equal to 0. The same proof as before shows that
the resulting invariants σ 7→ ΠmRqζRqξσ(υ) are of finite type. The relation between these
invariants and the Milnor µ invariants (with arbitrary indices) of string links is the same as
the relation between σ 7→ RζRξσ(υ) and the no-repeating-indices µ invariants, and again,
there is no difficulty in showing that the newer µ invariants are Vassiliev invariants.

Remark 5.5. Lin [15] has proven in a different way that the Milnor µ invariants are Vassiliev
invariants.

6So, for example, in (α↓β)↑(γ↑(δ↑ϵ)), the depths of α, β, γ, δ, ϵ are 1, 2, 2, 3, 4 respectively.
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6. Odds and ends

6.1. Some questions.

Problem 6.1. Does the image of Msl∗ in Ksl∗ correspond to some class of ‘polynomial
invariants’ of string links the way the image of M∗ in K∗ correspond to the HOMFLY
and Kauffman polynomials? Asked aboutMhsl and Khsl, this problem is similar to asking
whether the no-repeating-indices Milnor µ invariants all come from link polynomials.

Problem 6.2. Link the two parts of this paper. In other words, find how to express the
Vassiliev invariant corresponding to an interesting disk as in (4) in terms of the invariants
of section 5.1.

Problem 6.3. Bhsl is the intersection of two subspaces of Bsl — the subspace Bint of in-
teresting diagrams and the subspace Bfor of forests. This intersection was shown here to
correspond to homotopy theory of string links. Can anything be said about the string links
invariants corresponding to either Bint∗ or Bfor∗?

Problem 6.4. A possibly related problem: On the maps (3) and (4), where are the invariants
σ 7→ ΠmRqζRqξσ(υ)? Do they correspond to linear functionals on Bfor?

Problem 6.5. Asl is a co-commutative but not commutative Hopf algebra. By the structure
theory of such algebras [19], Asl is the universal enveloping algebra of the Lie algebra Psl

of primitives of Asl. What is Psl? Notice that the structure of the analogues Lie algebra in
the case of braids is understood, as in [7, pp. 847].

Problem 6.6. Develop a similar theory for links, rather than string links. The links analog
of Asl is clear — simply replace all the directed lines in the diagrams making Asl by circles.
But unlike in the case of knots, this is not a trivial operation, and, in particular, it is not
clear what the analog of Bsl should now be.

6.2. Acknowledgement. I am indebted to N. Bergeron, C. Day, M. Kontsevich, J. Levine
and X-S. Lin for teaching me about homotopy link invariants and in particular to M. Kontse-
vich and X-S. Lin for pointing out some mistakes in my initial understanding of the subject
and in earlier versions of this paper. I wish to thank the anonymous referee for his com-
ments.
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