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Abstract. This is a regularly updated collection of results of computations related
to Vassiliev invariants. It is distributed using photocopiers, laser printers, and the
internet. If you have data to add, please let me know!
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As a warmup, let as start with a reproduction of the table in section 6.1 of [1]:

m 0 1 2 3 4 5 6 7 8 9
dimGmA 1 1 2 3 6 10 19 33 60 104
dimGmW 1 0 1 1 3 4 9 14 27 44
dimGmP 1 1 1 1 2 3 5 8 12 18
dimGmLie 1 1 2 3 6 10 19 33 60 104
diagrams 1 0 1 2 7 36 300 3, 218 42, 335 644, 808
relations 0 0 0 2 15 144 1, 645 21, 930 334, 908 5, 056, 798

The latest edition of this collection of results is available at http://www.ma.huji.ac.il/
∼drorbn and at file://ftp.ma.huji.ac.il/drorbn.
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Remark 1. • Gm obj denotes the degree m piece of a graded object obj. A is
the space of chord diagrams modulo the 4T relation (see e.g. [1]). W is the
space of weight systems, that is, functionals A → Q that vanish on chord
diagrams having an isolated chord. P is the space of primitive elements of A
(recall that A is a commutative and co-commutative Hopf algebra). GmLie is
the subspace of (GmA)∗ spanned by the Lie algebraic weight systems of [1].
In fact, up to degree 9, it is spanned by the weight systems corresponding to
classical groups.

• Vogel [10] proved that dimGmSSLie < dimGmA for large enough values of m,
where SSLie denotes the class of semi-simple Lie and super-Lie algebras.

• The numbers in the last two rows indicate the size of the matrices that had to
be row reduced in order to compute dimGmW . These numbers have no real
significance — they somewhat depend on the details of the algorithm chosen
— and are displayed only so as to give an impression of the complexity of the
problem.

• The problem is highly exponential and it is unlikely that it will be possible to
use the same techniques to compute dimG10A.

• It took about 2, 106 lines of C++ code and about 10 days of CPU time to
compute the above numbers. The programs are available at my ftp/http sites.

1. Knots

The following is a table of the dimensions βm,u and ϕm,u of GmBu and of im Φ|GmBu

where GmBu is the space of connected Chinese Characters of degree m having exactly
u univalent vertices, divided by the AS and IHX relations. This space as well as
the map Φ : Bu → {marked surfaces} are defined in [1].
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u = 0 u = 2 u = 4 u = 6 u = 8 u = 10 total (u > 0)
m = 1 β 1 1 1

ϕ 1 1 1
m = 2 β 1 1 1

ϕ 1 1 1
m = 3 β 1 1 1

ϕ 1 1 1
m = 4 β 2 1 1 2

ϕ 2 1 1 2
m = 5 β 2 2 1 3

ϕ 2 2 1 3
m = 6 β 3 2 2 1 5

ϕ 3 2 2 1 5
m = 7 β 4 3 3 2 8

ϕ 4 (3) 3 3 2 8
m = 8 β 5 4 4 3 1 12

ϕ 5 (4) 4 (3) 4 3 1 12 (11)
m = 9 β ? 5 6 5 2 18

ϕ ≥ 6 (4) 5 (4) 6 (5) 5 2 18 (16)
m = 10 β ? ? ? ? 4 1 ?

ϕ ≥ 8 (5) ≥ 6 (4) ≥ 8 (6) ≥ 8 (7) 4 1 ≥ 27 (22)
m = 11 β ? ? ? ? 8 2 ?

ϕ ? ≥ 8 (5) ≥ 10 (7) ≥ 11 (9) 8 (7) 2 ≥ 39 (30)

Remark 2. • Up to and including m = 9, βm,u = 0 if u is odd. For m = 10 this
is not known yet. ϕm,u = 0 if u is odd for all m.

• When different than ϕm,u, the dimension of im Φ projected to orientable sur-
faces appears in parenthesis after ϕm,u.

• As was noticed by M. Kontsevich [6], for every m one has βm,0 = βm+1,2,
βm,1 = 0, and similarly for ϕ.

• Vogel [10] proved that ϕm,u < βm,u for large enough values of m and for
u = 0, 2. The same is expected for u > 2 as well.

• The symbol ‘≥’ appearing in some of the entries above can most likely be
replaced by ‘=’. ϕm,u was computed by computing Φ on a large number of
random Chinese characters, but not on all of them. So there is a (small)
probability that something in the image of Φ was missed.

• The programs used in the computation of the above numbers are available
from my ftp/http sites.

Similarly, here are some values of ϕm,u for higher m and u. Notice that most of
these numbers are just lower bounds, for the same reason as in remark 2. Due to
time constrains, the lowest entry in each column was computed by computing Φ on a
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relatively small number of random Chinese characters, and the probability of mistake
in these cases is higher.

u = 6 u = 8 u = 10 u = 12 u = 14 u = 16 u = 18
m = 12 ≥ 14 (10) ≥ 12 (10) 5 1
m = 13 ? ≥ 18 (13) ≥ 10 (9) 3
m = 14 ? ≥ 22 (14) ≥ 17 (14) 7 1
m = 15 ? ? ? ≥ 15 (13) 3
m = 16 ? ? ? ≥ 27 (21) 8
m = 17 ? ? ? ? ≥ 19 (16) 3
m = 18 ? ? ? ? ? 10 (?) 1
m = 19 ? ? ? ? ? ? 4

Remark 3. The dimensions βm,u discussed above are the same as the dimensions
βm(u′) discussed below, when u′ = (u) is a partition of length 1. Thus some more
βm,u’s, for odd values of u, can be read from the tables in sections 2.1.10–2.1.20.
These additional dimensions all vanish. See also remarks 10 and 11.

2. String Links

Next, let us turn to Vassiliev invariants of string links.

2.1. Chinese Characters. By [2], the associated graded space to the filtered space
of Vassiliev invariants of string links is the dual of Asl, which is isomorphic to Bsl,
where Bsl is the space of Chinese characters with ‘colored’ univalent vertices (modulo
IHX and AS, of course). Thus Bsl has many different gradings — by the total degree
m (= half the number of vertices), and by the number of univalent vertices of each
color. For any partition u = (u1 ≥ u2 ≥ · · · ≥ ul), let βm(u) be the dimension of the
space Bm(u) of connected Chinese characters of total degree m and of ui univalent
vertices of color υi for each 1 ≤ i ≤ l (modulo IHX and AS), where Υ = {υi} is
some set of colors. For simple counting reasons, it is clear that βm(u) = 0 unless
|u| ≤ m + 1, where |u| =

∑
ui. The following are lists of the dimensions βm(u)

presently known to me:

2.1.1. Degree 1.

β1() = 1 β1(1) = 0 β1(2) = 1 β1(11) = 1

2.1.2. Degree 2.

β2() = 1 β2(2) = 1 β2(3) = 0 β2(111) = 1

β2(1) = 0 β2(11) = 1 β2(21) = 0
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2.1.3. Degree 3.

β3() = 1 β3(11) = 1 β3(111) = 1 β3(22) = 1

β3(1) = 0 β3(3) = 0 β3(4) = 0 β3(211) = 1

β3(2) = 1 β3(21) = 0 β3(31) = 0 β3(1111) = 2

2.1.4. Degree 4.

β4() = 2 β4(21) = 0 β4(211) = 2 β4(311) = 1

β4(1) = 0 β4(111) = 1 β4(1111) = 3 β4(221) = 1

β4(2) = 1 β4(4) = 1 β4(5) = 0 β4(2111) = 3

β4(11) = 1 β4(31) = 1 β4(41) = 0 β4(11111) = 6

β4(3) = 0 β4(22) = 2 β4(32) = 0

2.1.5. Degree 5.

β5() = 2 β5(31) = 1 β5(221) = 2 β5(321) = 2

β5(1) = 0 β5(22) = 3 β5(2111) = 6 β5(3111) = 4

β5(2) = 2 β5(211) = 3 β5(11111) = 12 β5(222) = 4

β5(11) = 2 β5(1111) = 5 β5(6) = 0 β5(2211) = 6

β5(3) = 0 β5(5) = 0 β5(51) = 0 β5(21111) = 12

β5(21) = 0 β5(41) = 0 β5(42) = 1 β5(111111) = 24

β5(111) = 2 β5(32) = 0 β5(411) = 1

β5(4) = 1 β5(311) = 2 β5(33) = 1

2.1.6. Degree 6.

β6() = 3 β6(5) = 0 β6(321) = 6 β6(4111) = 5

β6(1) = 0 β6(41) = 0 β6(3111) = 10 β6(331) = 3

β6(2) = 2 β6(32) = 0 β6(222) = 11 β6(322) = 4

β6(11) = 2 β6(311) = 3 β6(2211) = 16 β6(3211) = 10

β6(3) = 0 β6(221) = 3 β6(21111) = 30 β6(31111) = 20

β6(21) = 0 β6(2111) = 10 β6(111111) = 60 β6(2221) = 14

β6(111) = 2 β6(11111) = 22 β6(7) = 0 β6(22111) = 30

β6(4) = 2 β6(6) = 1 β6(61) = 0 β6(211111) = 60

β6(31) = 2 β6(51) = 1 β6(52) = 0 β6(1111111) = 120

β6(22) = 5 β6(42) = 3 β6(511) = 1

β6(211) = 5 β6(411) = 3 β6(43) = 0

β6(1111) = 8 β6(33) = 3 β6(421) = 2
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2.1.7. Degree 7.

β7() = 4 β7(2111) = 16 β7(43) = 1 β7(5111) = 6

β7(1) = 0 β7(11111) = 34 β7(421) = 6 β7(44) = 2

β7(2) = 3 β7(6) = 2 β7(4111) = 15 β7(431) = 5

β7(11) = 3 β7(51) = 2 β7(331) = 10 β7(422) = 9

β7(3) = 0 β7(42) = 6 β7(322) = 12 β7(4211) = 15

β7(21) = 0 β7(411) = 6 β7(3211) = 30 β7(41111) = 30

β7(111) = 3 β7(33) = 6 β7(31111) = 60 β7(332) = 10

β7(4) = 3 β7(321) = 12 β7(2221) = 42 β7(3311) = 20

β7(31) = 3 β7(3111) = 20 β7(22111) = 90 β7(3221) = 30

β7(22) = 7 β7(222) = 22 β7(211111) = 180 β7(32111) = 60

β7(211) = 7 β7(2211) = 32 β7(1111111)= 360 β7(311111) = 120

β7(1111) = 11 β7(21111) = 60 β7(8) = 0 β7(2222) = 48

β7(5) = 0 β7(111111) = 120 β7(71) = 0 β7(22211) = 90

β7(41) = 0 β7(7) = 0 β7(62) = 1 β7(221111) = 180

β7(32) = 0 β7(61) = 0 β7(611) = 1 β7(2111111) = 360

β7(311) = 5 β7(52) = 0 β7(53) = 1 β7(11111111)= 720

β7(221) = 5 β7(511) = 3 β7(521) = 3
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2.1.8. Degree 8. The symbol ? below means that on May 5, 1996 I did not know the
relevant dimension. β8(221111) = 630

β8() = 5 β8(52) = 0 β8(2111111) = ?

β8(1) = 0 β8(511) = 6 β8(11111111) = ?

β8(2) = 4 β8(43) = 1 β8(9) = 0

β8(11) = 4 β8(421) = 12 β8(81) = 0

β8(3) = 0 β8(4111) = 32 β8(72) = 0

β8(21) = ? β8(331) = 19 β8(711) = 1

β8(111) = ? β8(322) = 24 β8(63) = 1

β8(4) = 4 β8(3211) = 63 β8(621) = 3

β8(31) = ? β8(31111) = 131 β8(6111) = 7

β8(22) = ? β8(2221) = 88 β8(54) = 1

β8(211) = ? β8(22111) = 193 β8(531) = 7

β8(1111) = ? β8(211111) = ? β8(522) = 9

β8(5) = 0 β8(1111111)= ? β8(5211) = 21

β8(41) = 0 β8(8) = 1 β8(51111) = 42

β8(32) = 0 β8(71) = 1 β8(441) = 8

β8(311) = 7 β8(62) = 4 β8(432) = 16

β8(221) = ? β8(611) = 4 β8(4311) = 35

β8(2111) = ? β8(53) = 5 β8(4221) = 51

β8(11111) = ? β8(521) = 12 β8(42111) = 105

β8(6) = 3 β8(5111) = 21 β8(411111) = 210

β8(51) = 4 β8(44) = 8 β8(333) = 24

β8(42) = 11 β8(431) = 19 β8(3321) = 70

β8(411) = 12 β8(422) = 33 β8(33111) = 140

β8(33) = 11 β8(4211) = 54 β8(3222) = 102

β8(321) = 22 β8(41111) = 105 β8(32211) = 210

β8(3111) = 36 β8(332) = 38 β8(321111) = 420

β8(222) = 39 β8(3311) = 70 β8(3111111) = 840

β8(2211) = ? β8(3221) = 108 β8(22221) = 312

β8(21111) = ? β8(32111) = 210 β8(222111) = 630

β8(111111) = ? β8(311111) = 420 β8(2211111) = 1260

β8(7) = 0 β8(2222) = 171 β8(21111111) = 2520

β8(61) = 0 β8(22211) = 318 β8(111111111) = 5040
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2.1.9. Degree 9. For degrees 9 and up, only the dimensions known as of May 5, 1996
are displayed, and two digit numbers in the partition u are underlined.

β9(1) = 0 β9(44) = 20 β9(91) = 0 β9(5221) = 84

β9(2) = 5 β9(9) = 0 β9(82) = 1 β9(52111) = 168

β9(11) = 5 β9(81) = 0 β9(811) = 1 β9(511111) = 336

β9(3) = 0 β9(72) = 0 β9(73) = 1 β9(442) = 38

β9(4) = 6 β9(711) = 4 β9(721) = 4 β9(4411) = 70

β9(5) = 0 β9(63) = 3 β9(7111) = 8 β9(433) = 46

β9(6) = 5 β9(621) = 12 β9(64) = 3 β9(4321) = 140

β9(7) = 0 β9(6111) = 28 β9(631) = 9 β9(43111) = 280

β9(61) = 0 β9(54) = 4 β9(622) = 16 β9(4222) = 216

β9(8) = 2 β9(531) = 28 β9(6211) = 28 β9(42211) = 420

β9(71) = 3 β9(522) = 36 β9(61111) = 56 β9(3331) = 186

β9(62) = 10 β9(5211) = 84 β9(55) = 3 β9(3322) = 280

β9(611) = 11 β9(441) = 32 β9(541) = 14

β9(53) = 13 β9(432) = 64 β9(532) = 28

β9(521) = 30 β9(10) = 0 β9(5311) = 56

2.1.10. Degree 10.

β10(1) = 0 β10(73) = 8 β10(911) = 1 β10(632) = 40

β10(7) = 0 β10(721) = 20 β10(83) = 1 β10(6311) = 84

β10(8) = 4 β10(7111) = 36 β10(821) = 4 β10(6221) = 124

β10(71) = 6 β10(64) = 16 β10(8111) = 9 β10(62111) = 252

β10(81) = 0 β10(631) = 44 β10(74) = 2 β10(611111)= 504

β10(72) = 0 β10(622) = 74 β10(731) = 12 β10(551) = 25

β10(711) = 10 β10(55) = 16 β10(722) = 16 β10(542) = 60

β10(10) = 1 β10(541) = 66 β10(7211) = 36 β10(5411) = 126

β10(91) = 1 β10(11) = 0 β10(71111) = 72 β10(533) = 84

β10(82) = 5 β10(101) = 0 β10(65) = 3 β10(5321) = 252

β10(811) = 5 β10(92) = 0 β10(641) = 20 β10(443) = 102
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2.1.11. Degree 11.

β11(8) = 8 β11(83) = 5 β11(921) = 5 β11(7221) = 180

β11(9) = 0 β11(821) = 20 β11(9111) = 10 β11(72111) = 360

β11(81) = 0 β11(8111) = 45 β11(84) = 5 β11(66) = 9

β11(10) = 2 β11(74) = 10 β11(831) = 15 β11(651) = 42

β11(91) = 3 β11(731) = 60 β11(822) = 25 β11(642) = 110

β11(82) = 15 β11(65) = 16 β11(8211) = 45 β11(6411) = 210

β11(811) = 16 β11(12) = 0 β11(81111) = 90 β11(633) = 141

β11(11) = 0 β11(111) = 0 β11(75) = 6 β11(552) = 126

β11(101) = 0 β11(102) = 1 β11(741) = 30

β11(92) = 0 β11(1011) = 1 β11(732) = 60

β11(911) = 5 β11(93) = 2 β11(7311) = 120

2.1.12. Degree 12.

β12(10) = 5 β12(921) = 30 β12(103) = 1 β12(85) = 7

β12(101) = 0 β12(9111) = 55 β12(1021) = 5 β12(841) = 40

β12(92) = 0 β12(84) = 29 β12(10111) = 11 β12(832) = 80

β12(12) = 1 β12(75) = 38 β12(94) = 3 β12(8311) = 165

β12(111) = 1 β12(13) = 0 β12(931) = 18 β12(76) = 9

β12(102) = 6 β12(121) = 0 β12(922) = 25 β12(751) = 66

β12(1011) = 6 β12(112) = 0 β12(9211) = 55 β12(661) = 75

β12(93) = 12 β12(1111) = 1 β12(91111) = 110

2.1.13. Degree 13.

β13(11) = 0 β13(103) = 8 β13(113) = 2 β13(101111)= 132

β13(12) = 3 β13(1021) = 30 β13(1121) = 6 β13(95) = 11

β13(111) = 4 β13(94) = 20 β13(11111) = 12 β13(941) = 55

β13(13) = 0 β13(14) = 0 β13(104) = 7 β13(932) = 110

β13(121) = 0 β13(131) = 0 β13(1031) = 22 β13(86) = 19

β13(112) = 0 β13(122) = 1 β13(1022) = 36 β13(851) = 99

β13(1111) = 6 β13(1211) = 1 β13(10211) = 66 β13(77) = 19
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2.1.14. Degree 14.

β14(12) = 7 β14(113) = 16 β14(123) = 2 β14(11211) = 78

β14(121) = 0 β14(1121) = 42 β14(1221) = 6 β14(111111)= 156

β14(14) = 1 β14(15) = 0 β14(12111) = 13 β14(105) = 13

β14(131) = 1 β14(141) = 0 β14(114) = 5 β14(1041) = 70

β14(122) = 7 β14(132) = 0 β14(1131) = 26 β14(96) = 22

β14(1211) = 7 β14(1311) = 1 β14(1122) = 36 β14(87) = 28

2.1.15. Degree 15.

β15(13) = 0 β15(123) = 12 β15(1321) = 7 β15(115) = 18

β15(14) = 3 β15(1221) = 42 β15(13111) = 14 β15(1141) = 91

β15(131) = 5 β15(16) = 0 β15(124) = 9 β15(106) = 36

β15(15) = 0 β15(151) = 0 β15(1231) = 30 β15(97) = 47

β15(141) = 0 β15(142) = 1 β15(1222) = 49 β15(88) = 58

β15(132) = 0 β15(1411) = 1 β15(12211) = 91

β15(1311) = 7 β15(133) = 2 β15(121111)= 182

2.1.16. Degree 16.

β16(14) = 8 β16(133) = 21 β16(1421) = 7 β16(131111)= 210

β16(141) = 0 β16(17) = 0 β16(14111) = 15 β16(125) = 21

β16(16) = 1 β16(161) = 0 β16(134) = 7 β16(116) = 42

β16(151) = 1 β16(152) = 0 β16(1331) = 35

β16(142) = 8 β16(1511) = 1 β16(1322) = 49

β16(1411) = 8 β16(143) = 2 β16(13211) = 105

2.1.17. Degree 17.

β17(15) = 0 β17(1511) = 8 β17(153) = 3 β17(14211) = 120

β17(16) = 3 β17(143) = 16 β17(1521) = 8 β17(141111)= 240

β17(151) = 5 β17(18) = 0 β17(15111) = 16 β17(135) = 28

β17(17) = 0 β17(171) = 0 β17(144) = 12

β17(161) = 0 β17(162) = 1 β17(1431) = 40

β17(152) = 0 β17(1611) = 1 β17(1422) = 64
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2.1.18. Degree 18.

β18(16) = 10 β18(1611) = 9 β18(1711) = 1 β18(1531) = 45

β18(161) = 0 β18(153) = 27 β18(163) = 2 β18(1522) = 64

β18(18) = 1 β18(19) = 0 β18(1621) = 8 β18(15211) = 136

β18(171) = 1 β18(181) = 0 β18(16111) = 17 β18(151111)= 272

β18(162) = 9 β18(172) = 0 β18(154) = 9 β18(145) = 32

2.1.19. Degree 19.

β19(17) = 0 β19(172) = 0 β19(1811) = 1 β19(1631) = 51

β19(18) = 4 β19(1711) = 9 β19(173) = 3 β19(1622) = 81

β19(171) = 6 β19(20) = 0 β19(1721) = 9 β19(16211) = 153

β19(19) = 0 β19(191) = 0 β19(17111) = 18 β19(155) = 41

β19(181) = 0 β19(182) = 1 β19(164) = 15

2.1.20. Degree 20.

β20(181) = 0 β20(21) = 0 β20(1821) = 9 β20(17211) = 171

β20(20) = 1 β20(201) = 0 β20(18111) = 19 β20(165) = 46

β20(191) = 1 β20(192) = 0 β20(174) = 12

β20(182) = 10 β20(1911) = 1 β20(1731) = 57

β20(1811) = 10 β20(183) = 3 β20(1722) = 81
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2.1.21. Remarks.

Remark 4. The βm(u)’s were computed by a rather complicated mathematica [11]
program. Mathematica is a very expressive language, but it is rather slow. So some
of the harder parts of the computation of some of the harder to compute βm(u)’s were
farmed out (through MathLink [12]) to programs written in C and C++. In particu-
lar, the problem of deciding whether two graphs are the same or not was farmed out
to B. D. McKay’s graph isomorphism and automorphism program nauty [8] through
a custom-made MathLink interface. I wish to thank Prof. McKay for his assistance.

Remark 5. The program used to compute βm(u) is not yet available on my ftp site.
Sorry, it is way too messy at this stage. The numbers βm(u) them self are available,
in the file table.m.gz in my ftp site. See section 4.

Remark 6. There is one known bug in the that program, but it is unlikely that it
caused a mistake in the end result. Roughly speaking, the problem is as follows.
Let G be the graph whose vertices are all Chinese characters (corresponding to some
fixed m and u), and whose edges correspond to I → H and I → X moves. Let
G′ be the graph obtained from G by removing all Chinese characters that have an
automorphism which reverses the orientation of an odd number of trivalent vertices
(that is, the Chinese characters that vanish already mod AS alone), and all edges
connected to them. If G′ is not connected, my program may miss a part of the space
and give a too low dimension. The problem is technical and easy to fix, and, in
fact, I also have a corrected version of the program in which the problem doesn’t
exist. But for some technical reason, the fixed version is much slower, and so, except
for a small number of test cases (on which the two versions of the program happily
agreed), most results were obtained with the wrong program. Generally speaking,
G is highly connected and G′ is obtained from it by removing a small number of
‘randomly placed’ vertices, and so I believe the results reported here are correct.

Remark 7. In degree 7 and up, some of the computations were performed modulo a
large prime rather than over the rationals, to prevent overflow problems. It is unlikely
that this affected the results in any way.

Remark 8. Just for the record, it took about 8 months of CPU time on a 1992
workstation to compute the above 614 dimensions, and they add up to a total of
30743.

Remark 9. In [2] it is proven that βm(1m+1) = (m− 1)!.

Remark 10. It is easy to check that βm(m) = 1 for even m, and βm(m) = 0 for odd
m.



SOME COMPUTATIONS RELATED TO VASSILIEV INVARIANTS 13

Remark 11. With some effort one can prove that βm(m − 1) = dm
6
e for odd m, and

βm(m− 1) = 0 for even m, where dxe denotes the smallest integer not smaller than
x.

2.2. The representation En. The symmetric group Sn acts in a natural way on the
space of Chinese characters having exactly n univalent vertices colored by n different
colors (modulo IHX and AS). Knowing the dimensions βm(u) for all m and u is
equivalent to knowing the decomposition of the resulting graded representation En

of Sn into irreducibles, and the βm(u)’s shown above are sufficient to determine the
structure of En for some small values of n and in some small degrees. With Ru

denoting the irreducible representation of Sn corresponding to the partition u of n
(so that Rn and R1n are the trivial and the alternating representations respectively),
here’s what we can do:

G1E2 = R2

G2E2 = R2

G3E2 = R2

G4E2 = R2

G5E2 = 2 R2

G6E2 = 2 R2

G7E2 = 3 R2

G8E2 = 4 R2

G9E2 = 5 R2

G2E3 = R111

G3E3 = R111

G4E3 = R111

G5E3 = 2 R111

G6E3 = 2 R111

G7E3 = 3 R111

G3E4 = R22

G4E4 = R4 + R22

G5E4 = R4 + 2 R22

G6E4 = 2 R4 + 3 R22

G7E4 = 3 R4 + 4 R22

G4E5 = R311

G5E5 = 2 R311

G6E5 = 3 R311 + R2111

G7E5 = 5 R311 + R2111

G5E6 = R42 + R222 + R3111

G6E6 = R6 + 2 R42 + 2 R222 + R321 + R3111 + R21111

G7E6 = 2 R6 + 4 R42 + 4 R222 + 2 R321 + 2 R3111 + 2 R21111

G6E7 = R331 + R421 + R511 + R3211 + R22111

G7E7 = R43 + 3 R331 + 2 R421 + 3 R511 + R2221 + 3 R3211

+ R4111 + 2 R22111 + R1111111

G7E8 = R44 + R62 + 2 R422 + R431 + R521 + R2222 + R3221

+ 2 R3311 + R4211 + R5111 + R32111 + R41111 + R221111

G8E9 = R63 + 2 R333 + 2 R432 + R441 + R522 + 3 R531

+ R621 + R711 + R3222 + 2 R3321 + 3 R4221 + 3 R4311

+ 3 R5211 + R6111 + 3 R32211 + R33111 + 3 R42111

+ R222111 + R321111 + R411111 + R3111111

Remark 12. As we are restricting our attention to connected Chinese Characters, it
is clear that GnEm = 0 if n < m− 1.
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Remark 13. Notice that many of the possible irreducible representations of S1–S9 are
missing in the above decompositions. I do not know why this is so.

Remark 14. Kontsevich’s observation (see remark 2) implies that E1 = 0 and that E2

is a multiple of R2. Vogel [10] proved that R111 appears in E3 with the same graded
multiplicity as R2 in E2 (but it is not known whether E3 is a multiple of R111). The
degree m multiplicity in both cases is βm,2 = βm−1,0.

Remark 15. The decompositions presented here were computed from the βm(u)’s
using Stembridge’s maple package SF [9]. I wish to thank N. Bergeron for his help
with both the mathematical and the computational aspects of this computation.

2.3. Invariants.

2.3.1. Primitive invariants. The information in the lists 2.1.1–2.1.7 can be used to
determine the dimension of the space of type m primitive Vassiliev invariants of
n-component string links, for sufficiently small values of m:

m\n 1 2 3 4 5 6 general n

1 1 3 6 10 15 21 n (1+n)
2

2 1 3 7 14 25 41
n (5+n2)

6

3 1 4 13 34 75 146
n (10−n+2 n2+n3)

12

4 2 9 34 105 271 608
n (154+45 n+20 n2+15 n3+6 n4)

120

5 3 16 81 321 1012 2679
n (258+31 n+30 n2+25 n3+12 n4+4 n5)

120

6 5 32 208 1040 3987 12452
n (1208+490 n+175 n2+105 n3+77 n4+35 n5+10 n6)

420

7 8 62 547 3515 16469 60767
n (4042+1175 n+700 n2+350 n3+238 n4+140 n5+60 n6+15 n7)

840

Remark 16. The dimensions presented above (and in sections 2.3.2, 2.3.3 and 3) are
of the appropriate degree subspace of the associated graded space. Remember that
a Vassiliev invariant of type 2 is also of type 4, and thus the total dimension of the
space of type 4 (say) primitive Vassiliev invariants of 3-component (say) string links
is 1 + 6 + 7 + 13 + 34 = 61, where the first summand (1) comes from the type 0
(constant) invariants, not listed in the above table.
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2.3.2. Framed invariants. The information about primitive invariants can be assem-
bled to give the dimension of the space of all Vassiliev invariants of type m of n-
component framed string links (excluding invariants of lower type):

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
m = 1 1 3 6 10 15 21
m = 2 2 9 28 69 145 272
m = 3 3 23 111 394 1130 2778
m = 4 6 60 413 2035 7781 24632
m = 5 10 148 1461 9849 49455 198981
m = 6 19 366 5027 45680 297622 1506218
m = 7 33 884 16924 205612 1722724 10875542

The formulas for general n are (the formula for m = 7 is too messy to print):

m type m invariants (excluding lower types)

1 n (1+n)
2

2
n (26+9 n+10 n2+3 n3)

24

3
n (48+30 n+41 n2+17 n3+7 n4+n5)

48

4
n (10512+9140 n+6900 n2+4415 n3+2568 n4+830 n5+180 n6+15 n7)

5760

5
n (2+n) (3+n) (4320+920 n+2682 n2+805 n3+638 n4+192 n5+40 n6+3 n7)

11520

6
n(10607616+13964832 n+11387656 n2+8527428 n3+5541270 n4+3139353 n5+1376706 n6+477729 n7+115514 n8+17955 n9+1638 n10+63 n11)

2903040

2.3.3. Unframed invariants. Similarly, here are some dimensions of spaces of Vassiliev
invariants of type m of n-component unframed string links (excluding invariants of
lower type):

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
m = 1 0 1 3 6 10 15
m = 2 1 4 13 35 80 161
m = 3 1 8 44 174 545 1441
m = 4 3 23 158 834 3436 11639
m = 5 4 51 527 3807 20474 87728
m = 6 9 130 1772 16987 117567 630207
m = 7 14 300 5813 74240 656859 4370368



16 DROR BAR-NATAN

The formulas for general n are (the formula for m = 7 is too messy to print):

m type m invariants (excluding lower types)

1 (−1+n) n
2

2
n (1+n) (14−5 n+3 n2)

24

3
n (32−10 n+15 n2+9 n3+n4+n5)

48

4
n (9072+1940 n+4380 n2+575 n3+888 n4+350 n5+60 n6+15 n7)

5760

5
n (23616−464 n+11532 n2+4680 n3+4489 n4+1371 n5+658 n6+170 n7+25 n8+3 n9)

11520

6
n(10123776+3844512 n+6322456 n2+2320164 n3+1893570 n4+931833 n5+485382 n6+153153 n7+43694 n8+7875 n9+882 n10+63 n11)

2903040

2.3.4. Factoring knots out. Divide Bsl further by the ideal generated by ‘boring’
connected Chinese character — Chinese characters all of whose univalent vertices are
colored by the same color. The resulting dimensions (“invariants of string links that
do not have a factor that depends on only a single component”, or, “genuine string
link invariants”) are:

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
m = 1 0 1 3 6 10 15
m = 2 0 2 10 31 75 155
m = 3 0 4 32 146 490 1345
m = 4 0 10 107 668 2986 10586
m = 5 0 22 347 2963 17359 78179
m = 6 0 53 1132 12923 97787 552517
m = 7 0 121 3653 55576 538394 3781984

3. Braids

Just for the sake of comparison, here are some dimensions of spaces of Vassiliev
invariants of braids. Notice that even the dimensions in section 2.3.4 are bigger than
the dimensions below.

m\n 1 2 3 4 5 6 general n

1 0 1 3 6 10 15 (−1+n) n
2

2 0 1 7 25 65 140 (−1+n) n (1+n) (−2+3 n)
24

3 0 1 15 90 350 1050 (−1+n)2 n2 (1+n) (2+n)
48

4 0 1 31 301 1701 6951
(−1+n) n (1+n) (2+n) (3+n) (8−10 n−15 n2+15 n3)

5760

5 0 1 63 966 7770 42525
(−1+n)2 n2 (1+n) (2+n) (3+n) (4+n) (−6+n+3 n2)

11520

6 0 1 127 3025 34105 246730
(−1+n) n (1+n) (2+n) (3+n) (4+n) (5+n)(−96+140 n+224 n2−315 n3+63 n5)

2903040

7 0 1 255 9330 145750 1379400 too messy to print
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Remark 17. These dimensions d(m,n) satisfy d(m,n) = (n−1)d(m−1, n)+d(m,n−
1) for m ≥ 1 and n ≥ 2, d(0, n) = 1 for n ≥ 1 and d(m, 1) = 0 for m ≥ 1. This fact,
which makes their computation very easy, follows from Drinfel’d’s presentation of (his
notation) an as a semidirect product of free algebras [4, page 847]. See also [3, 5, 7].

4. The data file

The file table.m.gz in my ftp site contains, in a mathematica readable format,
some of the data presented in this article as well as explicit basis for some of the
spaces whose dimensions were given here. To read this file, get it from my ftp site,
uncompress it by typing gunzip table.m at the UNIX prompt, start up mathematica
and load it in:

Mathematica 2.2 for SPARC

Copyright 1988-93 Wolfram Research, Inc.

-- Open Look graphics initialized --

In[1]:= << table.m

The space B5(22) is of dimension 3. Indeed,

In[2]:= DimB[5,{2,2}]

Out[2]= 3

A basis of B3(22) (which is 1-dimensional) is

In[3]:= BBasis[3,{2,2}] // InputForm

Out[3]=

{Graph[C1[6], C1[7], C2[6], C2[7], Dashed[6,7], OV[1,3,5], OV[2,4,5]]}

Let us explain the notation: A Graph is an object of the form Graph[v1, v2, . . . ],
where each vj is a vertex, that is, an object of the form vnamej[pj1, pj2, . . . ]. Such
a Graph object represents a graph with numbered and named vertices, so that the
jth vertex is named vnamej, and is connected by an arc to the vertices numbered
pj1, pj2, . . . . Chinese Characters are represented by such Graph object containing
three types of vertices — oriented trivalent vertices named OV, colored univalent
vertices named Ci for some integer i, and artificial bivalent vertices named Dashed

placed in the middle of each dashed line connecting two trivalent vertices.



18 DROR BAR-NATAN

Therefore, the Chinese Character in Out[3] is:

y y y

y

y

y

y

@@

@@

@@
��

��

��

��

��

��
@@

@@

@@

OV
Dashed

5

76

OV

C1
1

C2
3

2

C1

C2
4
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