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Chapter 1

The basic idea

1.1 The Chern-Simons path integral

The aim of this thesis is to explain some techniques originally developed by physicists
studying quantum field theory, and to show how they can be used to derive three
manifold and knot invariants. The basic idea is simple and to make it even simpler
we will ignore knots for a moment and explain it first for the case of a bare three
manifold. Our invariants will be complex numbers. To get a complex number out of
a bare three manifold, that has no additional structure on it, is hard. It is a lot easier
to get numerical quantities when there is more structure to play with. So we look at
a three manifold with an additional piece of structure, generate a complex number
using this additional structure, and then try to integrate our complex number over all
possible choices of such an additional structure. The additional structure that we will
pick will be a connection on some pre-picked bundle' on an oriented three manifold
M3, and the complex number that we will generate, the integrand in our program,
will essentially be the exponential of the ‘Lagrangian’” — the Chern-Simons number
[17] associated with the connection A:

1 2
cs(A) = E/Msa(AAdAJF “ANANA),

and so our invariant will be?:

W(M3, I{J) — DA 6% fM3 tr(A/\dA+§A/\A/\A).. (11)
A

(k is an integer parameter whose importance for our purposes will be made clear
shortly).

!Namely, a principal G-bundle for some Lie group G. We also assume that G' comes equipped
with a bilinear non-degenerate invariant form t on its Lie algebra G.

2For historical reasons, such integrals over infinite dimensional spaces are called path integrals.
For the origin of the name, check [22].



To incorporate a link X = {X,, 5:1 into the above picture, we have to pick a list
{Rw}sz1 of finite dimensional representations of G, and supplement the integrand:

r r
WM, x, k) & <H OX%R7> = /ADA 1 Ox, &, (A)e* =@ (1.2)
y=1

=1

Where3
Oxr(A) = trgPexp ( / din(s)Ai(X(s))> = dim R — [ dsX()A2(X ()RS,

+ d<51,2X“(51)Xi2(52)A?f (X (1)) A5 (X (s2)) Re o, Raya, — -+ (1.3)
81<82
(1.3) is, of course, just the trace of the holonomy of the connection A along X in the
representation R, expanded in powers of the connection A.

1.2 Perturbation theory and Feynman diagrams

1.2.1 Introduction

Luckily, the space of all connections A is an affine space and so there should be a
canonical choice for a measure on it — the Lesbegue measure. Unluckily, A is an
infinite dimensional space and so that measure doesn’t really exist. To go around
this we will use perturbation theory techniques that were originally developed by
physicists to be used in quantum field theory. Instead of attempting to calculate the
integral (1.1) as it is, we will try to investigate its asymptotic behavior as k/21i — oc.
It will turn out that (assuming that infinite dimensional Lesbegue measures do exist)
to determine this asymptotic behavior requires only evaluating finite dimensional
integrals represented by so-called “Feynman diagrams”, and therefore it is possible
to define the asymptotic behavior of (1.1) to be given by those “Feynman diagrams”,
without ever giving meaning to the integral (1.1) itself. T will very briefly present
these techniques here. Further information can be found in any quantum field theory
textbook such as [36, 21, 29].

To illustrate the technique of Feynman diagrams, let us first look at a simpler
finite dimensional analogue — let £ be a smooth real-valued function with finitely
many stationary points {z;}!_, on Euclidean space RY (a ‘Morse’ function), and let
us try to understand the & — oo asymptotics of:

Zk:/ dN g e -,
RN

3In this formula, as throughout the rest of this thesis, the Einstein summation convention applies
— there is an implicit summation over indices (such as i, a, «, ...) that are repeated twice. Also
notice the difference between try and tt — in this thesis & will always refer to an invariant bilinear
form on a Lie-algebra, while ¢ry is just the usual matrix trace in End[V]. Many times the subscript
V' will be omitted and matrix traces will simply be denoted by ¢r.



Namely, we will try to find constants Wy, Wi, ... so that asymptotically

, 4
4 ) _ike(a) o WD
2, = / GAVE et~ ST 3T S (1.4)
R k—o00 ;—1 m=1

1.2.2 The stationary phase approximation

The first step, even before Feynman diagrams are introduced, is to use the station-
ary phase principle which says that to zeroth order in 1/k, the large k& behavior of
JexpikL is given by

] I im gign L(x;) )
N AN« ezkﬂ ~ Z € 6lkﬁ(:ci). (15)
R koo 21 \/(Amk)N [det L(a;)]

Here L(x;) is the Hessian matrix of £ at z;. In other words, det L(x;) is the deter-
minant of the operator L(z;) : TRY — TR defining (using the Euclidean inner
product) the quadratic approximation to f(x) around z;. sign L(x;) is the signature
of that quadratic approximation, i.e. the difference between the number of positive
and the number of negative eigenvalues of L(x;).

The intuitive justification of (1.5) is the following. When k is positive and large
and z is not near a stationary point, kL varies very rapidly around z, exp ik L oscillates
very rapidly, and therefore the points near x contribute very little to [expikL. If x
is near the stationary point x;, then in a coordinate system {,} around z; in which
L(z;) is diagonal with eigenvalues {)\,} we can approximate

L(x) ~ Lx)+ 3 Mg

This means that the contribution to [ exp ik L from the points near x; can be approx-
imated by

N

N
e—0 JR el

where the convergence factor —e£? was inserted to account for the cancellations arising
from the rapid oscillations of the integrand for large £&. Computing the Gaussian
integral (1.6) and then taking the ¢ — 0 limit, we get

N
(1.6) = etk L(xi) H et

Summing over the stationary points, this is exactly (1.5).
A rigorous and more complete treatment of the stationary phase principle can be
found in section 7.7 of Hérmander’s book [28].

7



1.2.3 Feynman diagrams

Having computed the k£ independent constant factor Z in (1.4), we will next try to
understand the part of (1.4) that does depend on k. For simplicity, let us now assume
that £ has just a single stationary point on R”, that this point is the origin, that
L£(0) = 0, and that £ near 0 is given by the sum of a non-degenerate quadratic
form and a cubic correction to it. Therefore, the integral whose large k£ asymptotic
behavior we want to determine is:

Zk — / deE eik(%/\ijxixj-l-)\ijkxile‘k). (17)
RN

The general case is not any harder.
By a simple change of variables,

i — 7 =Vki, (1.8)
(suppressing primes)
Zo= kN [ aVpetthurtd T (1.9)
N/Q/ ANy 2 hi 'Y Z m()\ijkxixjxk)m. (1.10)
—, m!

And so the mth term in our asymptotic expansion will be given up to a multiplicative
constant by:
ANz i (Nijra’adzh)™ =
RN
this is a simple Gaussian integral, which we can evaluate using standard methods:

J=0

—i0 —i0 —id T
= | (Nig—=——— dN it Nl +idiat
l( WEYARY} o7 Jar T ]

—10 —1 1 yij
x [(Az’jka—fa—ﬁa—j)me—’5”‘]i‘]j]J_O, (1.11)
where A\¥ is the inverse of \;;: A\ AF = §;%.

Now there are no more integrations to perform. The expression that we obtained
can clearly be expanded further. The result of applying a differential operator to an
exponential is a polynomial times that same exponential, and as we are evaluating
this polynomial at 0, we are interested in its constant term. If we apply the 3m differ-
entiations in (1.11) one at a time and use Leibnitz’ rule to separate the derivatives to
‘those that act on the exponential’ and ‘those that act on the polynomial” we see that
the two types of differentiations have to be paired together — each differentiation
that acts on the exponential ‘brings down’ a factor J, and each differentiation that
acts on the polynomial eliminates such a factor. Remembering from (1.11) that the



differentiations come in triples coupled by a A;;;, we can represent the 3m differen-
tiations in (1.11) by m ‘cubic’ vertices, and every pairing that contributes to (1.11)
can be represented by a way of connecting these 3m vertices to make a graph. The
graphes that are created in this way are called Feynman diagrams. Each vertex in
such a diagram contributes a factor \;j;, and each edge a factor A (coming from
the exponent in (1.11)). In summary, to evaluate (1.11) we calculate a sum over all
Feynman diagrams with m cubic vertices of order three where the contribution of
each such diagram is a product of A;;;’s for each vertex and \4’s for each arc.

Example The term with m = 2 will be computed as follows:
W, — [( y ——Za——la——la)Q le‘ 6i%Aiinlj+iJili]

o 0 0, ey

J=0

—i0 —id —id —i0 —id —id 1 i it

— )\l - - _ )\i’ R / dN z—)\,'jx x)+iJ;x
[( WYAY} a0 N g 07, 9y Jan© €

1 2 3 1 2 3

« »
= 6 )\z'jk 6Z 6j 6k )‘i’j’k’ 6Z~f 8]'1 6k/ €

2

T
o

1 1 2 2 3 3
NSNS

ASNASNAN
+9 )\z'jk 6Z 8]- 6k )‘i’j’k’ 81‘/ 8]'1 6k/ e’

= (numl))\ijk)\i’j’k’)\iil)\jjl)\kkl + (nUmQ))\l]k)\l/]/k’)\” )\kk’)\ilj/ .

The pairings in the last equation are represented by the following diagrams:

k k'

It is not hard to see that in general m is also equal to the number of independent loops
in a diagram. Therefore we will also call the m’th order term in such an asymptotic
expansion the m-loop term. It is customary to call the arcs of a Feynman diagram
propagators.

1.2.4 Expectation values of polynomials

Recall from (1.2) that the quantity that we are trying to compute is not just [ DA e**,
but it is the expectation value of a certain function [T Ox. g, (A) of A with respect to
the measure e**DA. The functions O are written explicitly in (1.3) in terms of their
Taylor series expansion. Therefore, to understand the integral (1.2) we first have to
understand integrals as in (1.7), only with an additional polynomial P(Z) multiplying
the integrand. Moreover, after rescaling # as in (1.8) and carrying out exactly the

same analysis as in (1.9) - (1.10) with an additional P(Z) multiplying each integrand



we see that in the mth order term in our revised asymptotic expansion will be given
by:

Z de ei%)\i]‘IZl‘J Pm1 (f) (Aijkxixjxk)nn,
m=mi-+ms2 RY

where P, (Z) denotes the part of P(Z) which is homogeneous of degree m; in 7.
Noticing that just as before we ended up having to calculate the expectation value
of a polynomial (Pm1 (:E)()\ijkxixjxk)m) with respect to a Gaussian measure, we can
now use the same tricks and replace the above integral by a sum of ‘revised’ Feynman
diagrams that are also allowed to have a single exceptional vertex of some order my,
weighted by the coefficients of P, (Z).

1.3 The gauge-fixed Lagrangian

1.3.1 Gauge invariance

Recall that M? is an oriented three manifold, G is a Lie group with an invariant
integral bilinear form « on its Lie algebra G and P — M? a principal G-bundle on
M3,

The Chern-Simons Lagrangian cs(A) is defined for a connection? A by:

1 2
cs(A) = E/Msfr(AAdAJr SANANA),

where &(A; A Ay A A3) dof S(wAy A [Ag, A3]) = e([A1, Ao] A A3), and so relative to

some choice of coordinates and a trivialization of P,5

1

B

y 2
CS(A) /Mge“ktr(Ai(ajAk - 8kA]) + gAZ[AJ, Ak])

It is invariant under infinitesimal gauge transformations in which d4 = —Dc def

—(dc + [A, c]):

drdes = —/ & ((de+ [A,c) AdA+ AN d[A, ]
M3
+2(de+ [A, c]) NAN A)
- —/ ([, ] AdA+ AN [dA, ¢ — AN[A,dd +2de A A A A)
M3

—2/ [A, ] AAA A
M3

- /Mattc/\ A, [A, A]] = 0.

4We will be slightly imprecise and regard A as a G-valued 1-form on M?3.
5In the formula below €¥/* denotes the totally antisymmetric tensor in three dimensions — €% =
sign (ijk) if ijk is a permutation of {1,2,3} and €% = (0 otherwise.
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This implies that ¢s(A) is invariant under gauge transformations that can be pathwise
connected to the identity transformation. As it turns out (see [17]), cs(A) is not
invariant under general gauge transformations and, in fact, in our normalization it is
defined only up to a multiple of 2. This explains our choice of the normalization —
we have chosen precisely that normalization for which the exponential in (1.1) is well
defined.

The gauge invariance of c¢s(A) has an unpleasant consequence — the stationary
points of are necessarily not isolated, and the quadratic part of cs(A) near a stationary
point cannot be non-degenerate. The discussion of Feynman diagrams in the previous
chapter depended in an essential way on the invertability of that quadratic part, and
therefore cannot be applied here without modification.

1.3.2 The Faddeev-Popov procedure

To resolve the above complication we will once again look at our finite dimensional
analogue, assume that the Lagrangian there, $;;z'z7 4+ \;jpz’27 2%, is invariant under
the isometrical non-degenerate action of an [-dimensional Lie group G, and try to
evaluate the integral (1.7) without redundant integration over the orbits of G.

We will visit each orbit of G just once by choosing a function F : R® — R/ that
has a unique zero on each G-orbit, and inserting a §'(F (7)) into the integral. If we
want the result to be the same as the full integration and independent of F' we need
to add a correction term that corresponds to the volume of the G-orbit through
and as the action of G is by isometries this term can be calculated locally at a point
¥ satisfying F'(Z) = 0. It is given by the inverse ratio of the volume element of the
Lie-algebra G of G and its image in R! under the action of G composed with F. That
is to say — we have to look atS:

) il L Ns g il = e T
Z _ le‘ 6zk(%/\i]‘m T +>\1ka x xk)él(F(l‘)) det (gg > (;'E)
b

({Gy}i_, is a set of generators for G)

We will try to find a diagrammatic representation for the asymptotic expansion
of Z. The first additional term in the integral is easy — we can just replace it by its
Fourier representation:

(@) = [ e
R
and then incorporate F*(Z)¢, as a new term in the Lagrangian. The other new
term, det (g—g), can be dealt with in two equivalent ways. The first way is to do the
usual rescaling (1.8) and then to expand det (’g—g) in powers of ﬁ by first separating

det (g—g) to a constant part Jy and a part .J;(Z) which is a series in ﬁ, and then

6This expression for Z was first derived by Faddeev and Popov in [20].
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using

det (JU + %Jﬂf)) — det(Jy) 3 (%)m (AT (AL (). (1.12)

m

(A™ J is the mth exterior power of the matrix .J). Notice that .J; is just a constant
matrix, while J;(Z) depends on Z. It will now be possible to regard (1.12) as a
polynomial in 7’ and get a Feynman diagram expansion. It is an exercise in elementary
algebra to show that the polynomial (1.12) can itself be incorporated into the the
Feynman diagrams by introducing a new type of propagator denoted by directed
dotted lines that corresponds to .J; ' and a collection of new types of vertices each
connecting two dotted propagators with some dashed propagators — depending on
the exact form of J;(#). (There will also be some alteration to the combinatorial rule
of determining the numerical factor multiplying each diagram).

The other way of dealing with det (‘Z—g) is the one commonly used in the physics
literature and the one that we will be using here. It involves the idea of anti-
commutative integration. Non-commutative integration is treated in many places
(see e.g. ]9, 36, 21, 29]), and I will not explain it here in detail. Very briefly, ‘anti-
commuting’ variables (called ‘ghosts’) {¢,}._, and {c’},_, are introduced together
with a reasonable set of rules of integration with respect to them, and it is shown
that for any matrix J¢

/dlédlceé‘l]abcb o det (). (1.13)

(This is analogous and complementary to standard Gaussian integration — in which
the resulting determinant is in the denominator).
Using this, Z can finally be written as

. ] ;o o _ a
z o</ dN:c/ d'p /dlédlce’(k(%k"j‘”z‘”]““”Wmk)+Fa($)¢“)+°“(%Zb < /e“tot.
RN R!

Now we can use almost the same procedure as in (1.9) — (1.11) to get a diagrammatic
expansion for the asymptotic behavior of Z. Again it turns out that this involves
introducing a new propagator and some new vertices.

As we will see below for the case of interest for us — the Chern-Simons Lagrangian
— we will be able to choose F'in a way so that the quadratic part of the supplemented
Lagrangian will indeed be invertible.

1.3.3 Gauge-fixing for the Chern-Simons action

Let Ay be an arbitrary stationary point for cs, i.e.: %(AO) = 0, which means F4o =
dAy + %[AO, Agl = dAg + Ag N Ag = 0, let D denote the exterior derivative d twisted
by Ag, and for A an ad(P)-valued 1-form on M? define L(A) = cs(A4g + A):

1 2
L(A) =cs(Ag+ A) :cs(A0)+—/ w(ANDA+-ANANA).
A s 3

12



Choose a trivialization of P, local coordinates {z'} and a metric g;; on M? with

g def det(gi;), and get

(DA)ij = 0;A; — 0;Ai + [Aoiy Aj],

and
i def ij ij ij
D'= V997 Dj = /99" 0; + /997 [Aoj. ]
Pick the gauge condition %DZAZ' = 0, and get using the Faddeev-Popov procedure as
described in the previous subsection:

£tot(Aa d)a c, é) = kL + £gauge—ﬁxing + Eghosts
k 2
= qu@+——/ w(ANDA+ -ANANA)
dm Jms 3

+k
21 S

t (pD; A" — ieDy(D' + ad A)c) (1.14)

¢, ¢, and ¢ are Lie-algebra valued fields — ¢ = ¢°G,, ¢ = ¢*G,, and ¢ = ¢*G, for a set
of generators {G,} of G.

13



Chapter 2

The Feynman rules

In this chapter we will write the Feynman rules for the Chern-Simons theory, defined
by the total Lagrangian (1.14). Looking at (1.14) we see that the quadratic part of
our total Lagrangian decouples to a sum of two quadratic forms, one involving A and
¢, and one involving ¢ and c. Therefore, in the diagrammatic expansion of [ e“tot
there will be two types of propagators — a dashed line (— — — — ) representing the
inverse of the A¢ quadratic form, and a directed solid line (————) representing
the inverse of the ¢c quadratic form. One can also see that the cubic part of £, is
the sum of two terms. The first of these two terms is %A AN AN A and it corresponds
to an order 3 vertex connecting three dashed lines. The second is ¢D;[A’, ] and
it corresponds to an order 3 vertex connecting an incoming directed solid line, an
outgoing directed solid line, and a dashed line. Also, recall that we are not just
computing [ e*“tot, but something slightly more complicated — [ [T Oe*“tot. Looking
at equation (1.3), we see that the inclusion of the O’s amounts to adding a vertex of
a third type in which a dashed line ends on an ellipse that represents a component of
the knot.

Other then what was said above, I will skip the precise derivation of the Feynman
rules, and just describe the end result in the next few pages. For simplicity we will
restrict our attention to the case of a single (directed) knot X = {X}. There is no
difficulty to restrict the rules given below to the case were there is no knot and we
are trying to compute a 3-manifold invariant, or to enhance these rules to the case
of a many-component link. X will be given by a parametrization X (s) : S' — M3,
where S! is the oriented unit circle.

2.1 The diagrams

Pick an integer m, the order, the number of loops. To obtain the m’th invariant
Wi (X), first write all inequivalent connected® Feynman diagrams of order m. A

'Restricting our attention to connected diagrams corresponds to computing the asymptotics of
W(M3, X, k)/W(M?, k) instead of that of W(M?3 X, k).

14



Feynman diagram of order m is a diagram made of a single? directed ellipse (called a
Wilson loop) representing the knot X', a total of 2m cubic vertices of three different
types — type X2 A, type ¢Ac, and type A*, and lines (called propagators) connecting
those vertices. There are two types of propagators. The gauge propagators denoted
by dashed lines — — — —, and the ghost propagators denoted by directed solid lines
— . The three types of vertices differ by the types of propagators they are
allowed to connect. In a type X2?A vertex a gauge propagator meets the Wilson loop
representing the knot. A type ¢Ac connects a gauge propagator with one incoming and
one outgoing ghost propagators. Finally, in a type A? vertex three gauge propagators
meet. Figure 2.1 is an example for such a diagram. When looking at that figure,
remember that our diagrams are not allowed to have higher than cubic vertices. It is
therefore implicitly understood that when four or more lines meet at the same point,
that point is not a vertex and those lines pass each other without “interaction”.

Figure 2.1. An example for a Feynman diagram of order 4, having 5 type X2 A
vertices, 2 type GAc vertices, one type A3 vertex, 5 gauge propagators, and 2
ghost propagators.

Two diagrams are called equivalent if one can set a bijective type-preserving corre-
spondence between their vertices, in a way that corresponding vertices are connected
by the same type, same orientation, and the same number of propagators and Wilson
loop segments.

For example, if m = 2, the five® diagrams that we write in this stage are illustrated
in figure 2.2.

Figure 2.2. The five diagrams of order 2.

20f course, if we were dealing with a link with I’ components we would have had I' Wilson loops.

3 Actually, few more such diagrams can be written — but the ones that are not shown in the
figure are all singly connected — namely, they can be broken apart into two components by the
removal of a single arc. It is easy to see that such diagrams have a vanishing Lie-algebraic coefficient
if the connection Ag of the section 1.3.3 is the zero connection on a trivial bundle. We will ignore
these diagrams below.

15



2.2 The procedure

Our invariant W, (X) will be a sum of finite dimensional integrals, one corresponding
to each Feynman diagram. Let us concentrate in a single diagram D, and see how to
write the finite dimensional integral corresponding to it. This will be done in several
steps:

1. Mark the parts D as follows. Mark every end of every gauge propagator with a
lowercase letter from i, j, ... (thought to represent a spatial index — an integer
in {1,2,3}). Mark every type ¢Ac or type A3 vertex by a letter from z, y, ...
(thought to represent a point in M3). Add a lowercase letter from a, b, ...
(thought to represented a basis element of G) to every end of every propagator.
Finally pick a base point on the Wilson loop and follow the loop according to its
orientation marking the X2?A vertices encountered along the way by s, so, ...
(representing points in the parameter space S' of X) and marking the segments
of the Wilson loop cut by these vertices by lowercase greek letters such as a,
B, ... (thought to represented a basis element of the representation R). For an
example, see figure 2.3.

Figure 2.3. An unmarked diagram and its marking.

2. If D is a marked diagram, construct an algebraic expression (D) by taking a
product of terms, each corresponding to a part of the diagram D as follows:

(a) For each gauge propagator in D, marked, say, as ;f - fy take the term

Vi (z,y). (2.1)

Vi (x,y) is defined to be the inverse of the bosonic free part of the La-
grangian £. The symbols “I” and “J” are either numbers 7, j in the range
1 — 3, or the symbol ¢, and with this understood V is defined by the
relations: (the differentiations* are all with respect to x.)

tabDi\/ggijV}Zg(‘r: y) = 271-“525(377 y)a

4Remember that D is the covariant derivative with respect to the connection Ag.
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tawDin/gg" Vik(z,y) = 0,
tab (eijij%(’lc(x, y) + DiV(;’lc(x, y)) = 2midS6;6(x,y),
tan (¢7°D;Vig(,y) + D'Vis(z,y)) = 0.
If one (or both) of the ends of a certain gauge propagator is an X2 A vertex,

marked by a point s in the parameter space of X, for the purposes of this
construction simply replace it by the point X (s) € M3. For example,

Ly oy :
S (N C (CH)

For each ghost propagator in D, marked, say, as H take the term
Gy, 2).
G is defined to be the inverse of the ghost free part of the Lagrangian £

— that is to say, it is defined by the relation: (the differentiations are all
with respect to z.)

tabDiDiGbc = —27’(’(525(1‘, y)

For each marked A? vertex in D use the rule

\bj . .

N ! d ijk
CXT:_aT- —)g " $tabc€ . (22)
4

The symbol t,. essentially represents the structure constants of G — to
define t4,. we pick a basis {G,} of G, compute the structure constants
[Ga, Gb] = [5G and use the bilinear form « to ‘lower’ the index ¢ g, =
f&t 4. where to, = t(G,Gp).

For each ¢Ac vertex in D use the rule

e
| 1
};— — 5 dz tgre DL (2.3)

Here D! denotes differentiation with respect to 2!,

D
Dl — Im

acting only on the z-dependence of the term coming from the ghost propaga-
tor leaving the vertex. For a better understanding, let us look at this term
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together with the terms corresponding to the propagators surrounding our
vertex:

(e) For each marked X?A vertex in D use the rule

!

Y
lf}ﬁ R X (s, (2.4)

Here Ry is simply the representation R expressed in terms of matrices —
if {r*}dm® is a basis of R, then R(G,)r* = Rg4rP.

(f) Notice that by the restrictions we have on the types of allowed vertices in
D, the ghost propagators must form a set of disjoint closed loops. The last
term in £(D) will be

(=17, (2.5)

where F' is the number of such loops.

3. Now integrate the variables s, s9, ... over S preserving their cyclic order.

4. Divide the resulting integral by a combinatorial factor, S(D). For a diagram
D, S(D) is the total number of symmetries of D. A symmetry of a digram D
is a bijective self-map on the set of vertices and arcs in D, which sends a vertex
to a vertex of the same type, a propagator to a propagator of the same type,
a Wilson loop segment to a Wilson loop segment, and preserves beginning and
end points — the image of the beginning and end points of an arc have to be
the beginning and end points of the image of that arc. For example, the weights
S(D) of the five diagrams in figure 2.2 are 4, 2, 2, 4, and 3 respectively, while
that of the diagram in figure 2.3 is 1.

Example The complete expression corresponding to the diagram in figure 2.3 is
s [ dsis [ Radyd toaotta™ R B R
Q3 51<521<S33 Yy a'd e'dfelabe iyt atlep

XY (51) X7 (52) X (53) (D) G (y. 2)) (DLG* (2,))
Vit (@, ) Vil (2, X (s0) V) (@, X (52)) Vi (2, X (53))

(In this integral the domain definition s; < sy < s3 should be read as ‘the set of all
S123 € S! for which s, is between s; and ss in the chosen orientation of S'’, and not
as a linear ordering relation).
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Chapter 3

The one-loop contribution

3.1 When M?=R?

Having developed a general technique in the previous chapters, let us now try to apply
it in few particular cases, and let us start from the simplest case — the contribution
of order 1/k to W(flat R?, X') where X is a one- or two-component link in R?. There
is just one flat connection on R?® — the trivial one — and we take it to be the
background connection Ay. In this simple case the ghosts and the interaction term
ANANA don’t yet come into play, and of the infinitely many terms in the expansion
of Pexp only terms up to the second order term will be relevant. That is to say, we
just need to understand

WI — / DAD¢ 6% fR3 tt(eijkAiajAk-I—Q(baiAi)
A
2

y=1

<dim Ry + [ dsXi(5)A2 (X, (5) B

+ <dsl,QXf}l(Sl)X?(SQ)A?f(Xv(sl))A?;(Xv(sl))R%@R%al)
§1<82
This is just a simple Gaussian integral. We can regard ¢ as a (Lie algebra valued)
three-form on R?, A as a one-form, and write the quadratic form in our Gaussian
integral as

1 o Sy 1 /(A A

for L_ % (dx+xd).J, where JA Y A and J¢ & —4. Clearly (L_)? = A and therefore
V', which is essentialy the inverse of L_, is given by V = 2miL_ o Ga where G, is
the Green’s function of the (vector + scalar) Laplacian A. In the Euclidean case this
Green’s function G, is given by

tab

GY(z,y) = (t% is the inverse of ty & &(GoGy))

Ar|z — y|
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for both the scalar and the vector cases, and so the A part of our propagator is given
by

tab Z(l‘ _ )k
z Yy rab a b ' k ab Yy
a,i b, j i (‘T’y) < i (SU) ](y)> e kj 1471".% . y| Jk 2|l‘ y‘g
The terms of order 1/k are given by the diagrams in figure 3.1.
X1
X5
X, X,

Figure 3.1. First order diagrams

3.2 The linking number of two knots

Let us first consider the left most diagram. Ignoring the constant numerical coefficient
that the representations I?; 5 contribute it corresponds to the integral

£(X1, Xy) = /dsldsmj(xl(sl),XQ(SQ))X{Xg' (3.1)

which is the well known Gauss integral representation for 272 times the linking number
of two knots [38]. For the sake of completeness, and also as a preparation for the next
chapter where we will use similar but more complicated considerations to deal with
the two loop contribution, we will review here the proof of the invariance of (3.1)
under isotopies and show that indeed it coincides with the linking number.

It is possible to view V;;(z, y) isas a (1, 1)-form! on R*xR? where (z,y) € R*xR?,
i is the one form index for the variable x, and j is the one form index for the variable
y. Viewed this way, (3.1) is just that form V evaluated on the cycle X relative to its
left variable and on the cycle X, relative to its right variable:

The key property required for the invariance proof is that there exists a (2, 0)-form
F for which
d"V = d*F (3.2)

"An (m,n)-form on M x N where M and N are smooth manifolds is a section of 7}, TM @7y TN
where Ty : M XN — M and 7y : M x N — N are the projections. Clearly, one can define operators
dt . {(m,n)-forms} — {(m+1,n)-forms}, d¥ : {(m,n)-forms} — {(m,n+1)-forms}, etc. in analogy
with the standard definitions of de-Rham theory.
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away from the diagonal, where d” is the exterior derivative with respect to the left
variable and d? is the exterior derivative with respect to the right variable. Assuming
such an F, under an infinitesimal deformation of X; we will have (using Stoke’s
theorem twice)

S5£ = (5<X1|V|X2> — <The surface S spanned by the‘dLV|X2> _ <S‘dRF|X2> = 0. (33)

infinitesimal deformation of X7

As for the existence of F, notice that by our derivation of V, V = 2mixdo G,
where G, is the vector part of Ga, and therefore x*d“V = 2mixd*do G,. By
the commutativity of xd and G, one gets x“d!V = 27iG, o xd x d. Remembering
that GG, is given by an integral kernel, one can integrate by parts G, o xd x d to get
APV =21k AR KR ARG, = 2mi (AR 4 dR KR B G, = 2mi ] + 2mid R« dR %1 G,
Multiplying from the left by x* we obtain:

A"V = dR2mi x KRd® xR G, 4 2mi kP T AR 4 omi kP T
The formula we just got for F' can be expanded to give

iz —y)*
Fz'j,—(% y) = fijkﬁa
and this can be used to verify (3.2) directly. Don’t let yourself be mislead by the
apparent equivalence of the formulae for V and for F! The indices are arranged a
little differently and verifying (3.2) is a little more than just playing around with
these indices — some differentiations do have to be carried out and the verification
15 essentially the same calculation as the derivation in this paragraph.

Having shown that £ is indeed an isotopy invariant we can now use it to show
that it coincides with 277 times the linking number. Deform the knot so that it will
be almost planar with only ‘perpendicular crossings’. Now flip one of those crossings
us shown in figure 3.2. Clearly, when comparing the contribution to £ from before

X - X

Figure 3.2. Flipping a crossing

and from after the flip we can integrate the propagator with its endpoints only nearby
the crossing. If the crossed arcs are € apart,
€

£(after) — £(before) = i / iz = ori. (3.4)

€2 + 52 + 53)3/2
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This is exactly the same relation is satisfied by 274 times the linking number, and
together with £(unlinked circles) = 0 (3.4) proves that £ is indeed 27i times the
linking number. To see that indeed £(unlinked circles) = 0, use the already proven
isotopy invariance to make sure that the two circles are very small relative to the
separation between them and then the integral defining £ will tend to zero.

3.3 The self-linking of a single knot

The situation with the other diagrams in figure 3.1 is a bit more complicated. Let
£5(X1) be the ‘self-linking’ of X;:

£,00) % J(XUVIXY = 3 [ dsidsaViy(Xi(51), Xi(s2)) Xi(s) X (). (35

(We have suppressed here the Lie-algebra coefficient which for R being the defining
representation of G = SU(N) in C" and for & being the usual matrix trace can be
seen to equal N? — 1. For more details see chapter 9).

For three vectors A, B, C it will be convenient to denote €;;,A’B/C*, the volume
of the parallelepiped spanned by 0, A, B, C' by det(A|B|C). Using this notation

(X (51) = X(s52)| X (s1) [ X (52))
X (51) = X (5)]? |

i det
£,(X) =4 / dsyds, (3.6)
This integral appears at first sight to be divergent because of the cubic term in the
denominator. Nevertheless when s; and sy are close, say e apart, X (s;) — X(so) ~ €
and the three vectors X (s1) — X (s3), X(s1), and X (s,) are within a cone of opening
~ €. Therefore the volume of the parallelepiped spanned by these three vectors is
~ € which is enough to suppress the singularity of the denominator. Unluckily, the
argument in (3.3) doesn’t go through — the key relation (3.2) holds only away from
the diagonal, and in (3.5) our integration domain does intersect the diagonal.

This point has already been treated by Caalugareanu [13, 14] (see also Pohl [34])
and later from a physical viewpoint by Polyakov [35] (see also Tze [40]). They found
that indeed (3.5) is not an invariant, but yet it can be renormalized by the addition
of a local term (essentially the total torsion of X') to give an invariant. It turns out
that to properly define the torsion everywhere X needs to be ‘framed’, and therefore
£, will just be an invariant of framed knots. We will arrive at the same results using
a somewhat different regularization which makes the current calculation a bit less
transparent but has a more straightforward generalization for the two-loop case to be
treated in the next chapters. Let us define £, by the integral (3.6) that defines £,
only with the integration domain restricted to

A, ¥ s — 5| > ]
Assume that X undergoes an infinitesimal deformation X — X 40X © X +w. Asin
the invariance proof for the case of a link, (3.3), Stoke’s theorem was used twice it will
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fail twice for this new case and ¢ £, will pick up four non-zero contributions — one from
each boundary term in each of the usages of Stoke’s theorem. Denoting the evaluation
of differential forms on A, by ( | | )a and on its two boundaries [s; — sy = +¢] by

(|| )+ we will get: (S again is the surface spanned by the infinitesimal deformation
of X)

1

= (S|d"V|X)a + (W[V]X)s — (w]V]X)-
= (S|d"F|X)a + (w]V]X); — (w]V]X)-
= (S|F[=)+ = (SIF|=)- + ([VIX) = (w]V]X) . (3.7)

We will try to understand the ¢ — 0 limit of 6 £, by expanding (3.7) in powers of
e. For s a variable in S' let X = X(s), X = X(s), w = w(s),..

. 2.. 3-'-
Xie=X(ste) ~ XieX+%Xi%X

2
Xee=X(ste) ~ XieX+%X

i

Using these notations, with the dummy integration variable s picked to be at the
point where w is evaluated,

det (X ie|w|X s — X)

WVIX)s /
NE/ sdet(X:I:eX+%X\w|:teX+§X:l:%)ﬁ()
2 | X — X3

i p 2 det (%XigX\MXi%X)
~ — S - —
2 € 731X] 8 (1 F €25

2|X?

Therefore (notice that the terms of order 1 cancel!)

VIX)s - V]X)~ o [ (—3X'X

. .9 ..
— : — det (X |w|X) + - det(X|w|X) | .
] s (S den (Xl ) +  den( Kol

Similarilly

X|wlX X
(S| F|-) /d det(X|w| X4 — X)

|Xie X‘S

i IXE L, 3% g e e
'y 1+ det (X|w =X F <%
2/S|e< |2>e<‘°"2 :F6>

and therefore (notice that again there is no term of order 1)

(SIF[=)+ = (SIF|=)-

1 ds <_3X~X

A | ..
~ = : — det(X|w|X) + - det(X|w|X) | .
] s (g el ) + § den( Kl )
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This finally gives that the e — 0 limit of 6 £, is?

§0f, = 5/ BE (—3 P det(X|w|X) +det(Xw|X)> (3.8)

and we can see that indeed 6 £, # 0 and £, is not a knot invariant.

3.4 The appearance of framings

Yet, some further investigation of £, shows that this can be corrected quite easily.
Define 7 to be i/2 times the total torsion of the curve X — that is to say i/2 times
the integral with respect to arc length of the local torsion 7(s) (see [18, pp. 22]) of
the curve, given by the standard formula

r(s) = - LX) XU X(s) (3.9)
X (s) x X(s)]

whenever the denominator is non-zero. As I will comment below, under X — X + w
one can show that 0£, and —J7 are given by exactly the same formula (3.8) so if one
defines

£, =£,+T

then £, is invariant under isotopies, so long as the denominator in (3.9) remains
non-zero.

What if that denominator is equal to zero? On the normal bundle of X there is a
canonically defined connection defined by the projection back to the normal bundle
of the usual differentiation along the knot of vector functions normal to it. i/2 times
the total holonomy of that connection along the knot is some imaginary number,
well defined up to a multiple of 72 which depends on a choice of a trivialization for
the normal bundle, and whenever 7 is defined, it will be shown below to coincide
with that number. Hence £, is an invariant of framed knots — a framing is just a
trivialization of the normal bundle which can be used to render 7 and therefore £,
well-defined. This necessity of framing the knot X agrees with the results of Witten
[42], but makes £, quite useless for an unframed knot — it is a multiple of i which
is well-defined only up to a multiple of 7i. For a framed knot it can be shown along
the same lines as in (3.4) to be 7¢ times the self-linking of a framed knot — 77 times
the linking number of that knot with its framing.

To complete the discussion we need to demonstrate the two differential geometric
assertions made above. Very briefly, if n(s) is any vector not tangent to the knot X
then the holonomy discussed above can be calculated by measuring how much the

2Tt is not hard to verify that the operations of taking the variation under X — X + w and of
taking the ¢ — 0 limit commute. A harder check of the same kind is described at the end of section
4.3.3.
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projection of n to the normal bundle fails to be parallel. It is an elementary exercise
to then find that relative to the framing given by n,

_- . e
T:—Z/ds|X|det :
2 | X2

X 20 — (X -n)X
|X x n? '

(3.10)

Setting n = X it is easy to see that (3.10) coincides with (3.9) and choosing n to
be a constant vector that is not parallel to X (s) for any value of s simplifies it the
most. One can then vary (3.10) under X — X + w and integrate by parts until all
the derivatives of w disappear. One is left with a huge and unfriendly expression
that with a tremendous amount of labor and juggling with vector identities can be
shown to equal (3.8). T could not verify this equality without the aid of a symbolic
mathematics computer program [48].

3.5 Appendix: The torsion of a space curve

Why is it that the relatively complicated calculation of (3.7)-(3.8) gives the relatively
simple answer (3.8)7 How can we be assured that when considering higher order per-
turbative invariants we will not get uglier formulas for d£, for which the correcting
procedure of the previous section will not work? A partial answer to these ques-
tions will be presented in this appendix — we will see that J£, can essentially be
characterized as the only functional that has certain invariance properties, and that
these invariance properties can be deduced directly from the definition of £ as the
variation of (3.5).

Let us start with a definition. A 1-form Q on the space = of smoothly immersed
parametrized curves in R? will be called a local variation form if it has the following
properties:

1. It is local. Namely, if X : S' — R? is a smoothly immersed parametrized curve
and w : S' — TR = R? is a tangent to =, then Qx(w) is given given by the
inner product of w with a vector valued polynomial P in \X|_1 and finitely
many derivatives of X:

Qx (W) = /S ds (P(X|7, X, %,..)w).

The coefficients of P are, of course, expected to be independent of X and of w.
The polynomial P is uniquely determined by 2.

2. It is wnwvariant — it is independent of the parametrization of X. Namely, if
f: S — S'is an orientation preserving diffeomorphism, then

P(Xof)=fP(X)of. (3.11)

3. It is closed as a 1-form on =. Namely, if § denotes exterior differentiation on =,
then 6Q2 = 0.
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4. Tt is SO(3)-invariant. Namely, if r is a rotation in SO(3), then P(r o X) =
ro P(X).

5. It has a vanishing scaling dimension. Namely, if C': R®* — R? is the map given
by multiplication by a constant ¢, C'(x) = cx, then P(C o X) = ¢ ' P(X).

It is easy to verify on apriori grounds that £, is a local variation form — the last
four properties follow immedietly from the definition of £; in (3.5), while the first
property follows after a short glance at (3.7).

Theorem 1 The form Q° given by
1 XX . . )
Qow:/ds . —3—Xx X+ X xX|,w
o= s (s (5 ) )

15 a local variation form and every local variation form is a constant multiple thereof.

Proof The fact that Q° is a local variation form follows from the fact that 6 £, is
such a form, and the computation in section 3.3 which identified 6 £, to be Q°/4r.
The uniqueness of Q° will be proven by writting the most general SO(3)-invariant P
of vanishing scaling dimension and adjusting the coefficients so that it will be closed
and parametrization independent.

By a simple enumeration, the most general SO(3)-invariant P of vanishing scaling
dimension, which furthermore scales as (3.11) for locally constant rescallings of the
parameter s is

1, X-X. X.-X. Xp. (X X)2.
P(X) = a.—X +a - a — X +a +a—X
X)) = agpt Fe g X g gt e
4+ ——X x X +b,——X x X. 3.12
"X X (3.12)

Let f be an orientation preserving diffeomorphism of R. Simple applications of the
chain rule of elementary calculus yield

(Xof)=fXof, (Xof)'=fXof+fXof,

(Xof)"=fXof+3ffXof+fXof. (3.13)
It is now an easy task to substitute the derivatives of X o f into (3.12) and to look

for constants a;_s, by o for which the equality (3.11) holds. The result is that there
are three linearly independent solutions:

PYX) = -3"—"XxX+ X x X, (3.14)
| XT° | XT?
1 . X-X. _X-X. |XP. (X-X)2.
P{X) = —X-"+""X -3 X—|.|X ux (3.15)
X2 X! X X! X6
PY(X) = ‘X‘QX— MX (3.16)
X X[ '
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P is the polynomial that gives rise to Q°, and we just have to prove that no other
linear combination of P°, P!, and P? is closed. As P is odd under a reversal of the
orientation of the ambient R?® while P! and P? are even under such a reversal, we can
restrict our attention to combinations of the form ¢; P' + ¢, P2. Let us pick such a
combination P¢, and let us denote the corresponding 1-form on = by Q¢ = ¢; Q' +¢, Q2.
To show that €2¢ is not closed, it is enough to find two vector fields w; 2 on = and a
point X € = for which

6QC|X (wl, (.A)Q).

Pick the point X € = to be the unit circle in the xy-plane with its natural
parametrization, and let the vector fields w; 2 be given in a small neighborhood of
X by two orthogonal sections of the normal bundle of X that ‘rotate’ around X a
certain number n of times — as shown in figure 3.3. Let as now look for terms of

Figure 3.3. The circle X and two orthogonal infinitesimal deformations thereof
that ‘rotate’ around it n = 3 times. One of the vector fields is illustrated by full
lines and the other by dashed lines.

order n® in §Q°(wy,ws). As

C spe op
o () = [, ds (ml R 'M) |

it is clear that such terms can come only from the variations of terms in P¢ that
involve the third derivative of X. The first such term is ¢; X /| X|?, and its variation
is

5 s\ X ¢ . .
¢ (wg-é—u}l—wl-@> XF - (2(X - @) (X - wi) = 2(X - ) (X - wy)

+‘X|2(fbl C Wy — W - w1)) .
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Remembering that |X| =1 and that &y - wy = —s - wy ~ (const)n® # 0, we see that
the first term in P¢ gives a non-vanishing contribution of order n? to §Q)¢, proportional
to ¢;. Similarly we can compute (keeping only terms of order n?*)

&1 <W2‘6—w1_w1'm> WXNQ ((X'Wl)(X‘U)Q)—(X‘U)Q)(X'wl)) =0

using the orthogonality of X and w1 2.

Therefore, in order to have 6Q°(wy,ws) = 0 we must have ¢; = 0, namely Q¢ =
c29?. Computations of exactly the same nature as the above now show that in order
to have no term proportional to n in 6Q°(wy,wy) we must have ¢; = 0.

O
Remark The above theorem and the results of the previous section combine into
a somewhat amusing property of the total torsion of a space curve — it can be

represented as an integral of a local quantity (3.10), but not in a canonical way ((3.10)
depends on the non canonical choice of n, and (3.9) is ill defined for some curves).
Yet its variation 67 = —0£, = —iQ2°/2 can be represented canonically as the integral
of a local quantity, and it is the only global quantity (of vanishing scaling dimension)
whose variation can be represented in a parametrization independent manner.
Remark The only direct proof I know for the crucial equality 67 = —iQ°/2 is
described in the paragraph proceeding (3.10). This proof is very tedious and uses
a computer for some of the algebra involved. However, there are simple arguments
that establish directly that 67 = —d£; (see e.g. [34]). In section 3.3 we saw that
d£, = i0°/2, and the last two facts together constitute a reasonably simple proof of
the equality o7 = —iQ°/2.

Remark In terms of the Frenet frame (7, N, B) (see [18]), we have

P°(X) = iiB — k7N,

28



Chapter 4

The two-loop contribution

4.1 Statement of the problem

Let X be a parametrized knot in R?. In this chapter we will try to understand the
two-loop contribution W, to W(flat R3, X') — the contribution of order —47%/k%. All
the terms in the Lagrangian £;,, come in to play now, and on a flat R? our W reads

Wi(flat R, X) = /DADM)CDE trrPexp </ din(s)Ai(X(s))> /Lot

Lo = - [ 4 (w’cAiajAk +200'A; + ST A Ay, Ay + 200,00 + (A c]))

If R is a unimodular' representation, terms that have only one interaction point
with X have a vanishing coefficient and therefore the only potential contribution at
two-loops come from the five diagrams in figure 4.1.

The first two diagrams are divergent because of the integration over the location
of the interaction vertices in R3. But as is readily verified and as was shown in [24]
the integrands in these diagrams are exactly the opposites of each other so if we sum
them before integrating we get zero. (We will accept at face value that A and B
cancel and prove that C + D + E' is a topological invariant. It is very likely that the
full story is a little more elaborate. In the context of a consistent regularization that
could be used to all orders, A and B are likely to cancel only up to an imaginary
multiple of the one loop contribution and thus what is calculated here is just the real
part of the two-loop contribution. See chapter 5 and [33, 2, 16]). Also, it is clear that
if one ignores the Lie-algebra coefficients of diagrams C' and D and the combinatorial
coefficients S(C') and S(D) then their sum is equal to the square of the one-loop one-
knot contribution that was discussed in the previous chapter. It is therefore possible
to subtract from W, a multiple of (W;)? in such a way that diagram C' will disappear.
We will call the resulting quantity W;. The coefficient of diagram D in W, will be the

!Namely, a representation by linear operators of trace zero.

29



. B .
. .

Figure 4.1. The five two-loop diagrams.

difference between the coefficients of diagrams D and C' in W, and these coefficients
differ only because the Lie-Algebra indices are contracted in a slightly different way.

So if tg def (G.Gy), 1% is the inverse matrix of 4, and we use ., and t% to raise and
lower Lie-algebra indices, we get?:

tractions for D tractions for C

C(D) . C(C) d:ef (Lie algebra con—) . (Lie algebra con—)
b’ yec! ) a bb' pcc’ ) a
= t"'t* Ry s RS, R}, RS — 1"t RUsRy, R} R% (4.1)
The fact that R is a representation is just the relation —f‘leRaﬁv = tbb'tCC'(Rbﬂ,(;Rﬁw -
Rf,éng) and therefore
(4.1) = —f** R R}, RS, « —C(E).

These are exactly the negatives of the Lie-algebra contractions for diagram E. Taking
into account the different symmetry factors for these diagrams we finally get (after
dividing by the Lie algebraic coefficient)

g 11 1
Wy & W = —Z/S(D)+§/5(E).

More explicitly, if diagrams D and E are marked as in figure 4.2, then W is given
by

(X7 — X5)™ (X — Xy)"

X1 = X5 X, — X

2The Lie-algebra computation below is a particular case of the “STU” relation of chapter 9.

} 1 g
W, = 1—6/Acf81—4X1X§X§Xi€ikm6ﬂn
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X(s 1)
X(s l) .

X(s») X(s3) X(s 9 X(s )

Figure 4.2. The two contributing diagrams.

1
487

III

8123/ dng X]Xk v eli’i”ejj’j”ekk’k”

(X1 — Z) (XQ — Z) (X3 — Z)k”
X, — 2P | Xy — 2P | Xy —2P

(4.2)

where X; stands for X (s;),i=1,...,4.

In the case of G = SU(N) ; R = C" one can calculate® that in W, the Lie-
algebraic coefficients of diagrams C', D, and E are W, 1_]\],\’2, and N(N? — 1)
respectively, and therefore in this case

W = m <W2 2N(Wl) ) '

Our aim in the rest of this chapter is to prove the following theorem:

Theorem 2 Let X be a parametrized knot in R, (that is to say, X is a smooth non-
singular function from S' to R® that has no self intersections). Then the integrals
represented by the diagrams D and E of figure 4.2 are convergent, and their sum W
is an isotopy invariant of the knot X. This invariant can be identified to be —n*/6
minus 472 times the second non trivial coefficient of the Conway polynomial of X,
whose reduction mod 2 is the well known Arf invariant of X .

4.2 The finiteness of W,

It still isn’t clear that the integrals represented by the diagrams D and E are finite.
For diagram D there appears to be a singularity when three of the integration variables
are close together but exactly the same analysis that has shown that the self-linking
integral is finite shows that this integral is also finite. In diagram E there appears to

3See chapter 9 for the details.
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be a problem when two or three of the knot integration variables are close together
and are close to z — the variable of the A% vertex integration. Up to a constant
factor, diagram F represents the integral:

JEE) = [ s 20X (50) X (52) X4 (50) Vi (X (51). X (s2). X () (43)

where

def

def 44k 1510 11
) = €/ Ty, T2, T3) = 6ijpimm T 7" (21, 9, 23)

i1l !
€ 622’1”63]’]”6/6]4:’/6”7-‘ J (

V;jk(xla T2, T3

and
k

3 i (e N (e
T (2, 29, 25) d:ef/R3 5 (x1 = 2) (29 — 2)7 (23 — 2)

3 3 3
|21 = 2" |22 — 2[7 |23 — 2|

The integral defining T is clearly finite for every choice of distinct z;_3 in R?, but

it blows up rapidly when some of the z’s coincide. To show that in spite of this the

integral (4.3) is finite we need to understand the behavior of T" as two or three of its

arguments coincide.

4.2.1 A simpler expression for T

Let us first rewrite 7" in a way that will make it easier to handle. Using

2/3Nd ].

37T /0 N3/2

we can rewrite T as

] i 3 2/3 9
- 277T3/2 / R3 d2(x1 — 2)" (w2 — 2) (w3 — 2)%e Do O |Tm—2]?
Introducing the notation:
a?n/?’
A = Z a72n/3 ; o o
t = Z)\m$m ; s = Z)\m|xm_t|2

we get

Tk (xhx%gj?) 2771-3/2 / 3o / dZ xl _ Z 372 o Z) (x Z)kefA(\zftPJrs)

3oeAs _ o kAl
277r3/2/ d'o / dz(zy —t — 2)'(xg — t — 2) (25 — t — 2)Pe :
This is just a Gaussian integral with respect to z, and it can be evaluated to give

64 [ 5 et

27 Jo A3/2

i (@1 = £)'07% + (2 — £)10M + (25 — 1)*6Y)

+ (21 — 1) (s — 1)) (w5 — t)k} .
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Changing variables from d®« to d?A\dA (there are just two integrations over the \’s be-
cause they are constrained to satisfy Y- A, = 1) we pick the Jacobian %A”Q\/)\l)\g)\g
and get (after evaluating the A integral)

' — t)iIk — $)Igki _ p\kgii
T”k(:cl,:rQ,:cg) — 4/d2AM[(xl ) +(1‘2 ) +(1'3 )

(71 = 1) (g — 1) (w5 — )"

+4 =

(4.4)

4.2.2 Bounding the possible divergence

Clearly the integral (4.3) is translation invariant, and invariant under reparametriza-
tions of X of the form s — s+ sg. So in the investigation of its possible divergencies
we can assume that, say, 0 is the midpoint between s, and ss3, s; is farther away from
so or s3 than the distance between these two:

1
S1 =T : Sg = —nT : S3 = 1nT : nl < =,

3
and that X (0) = 0. In this case we can write
ijk

y IS Sijk
TH*( Xy, X pry Xpr) =4 / P A/ A Ao [81—2 + 4;—3] (4.5)

with

STEE (X, = ) R 4 (X, — 0708+ (X, — 1)F67,
S L (X, = ) (X — 1) (Xgr — )",

The problematic regions are when 7 or 7 are small, and we need to be able to estimate
integrals like those in (4.5) for such values of  and 7.

Lemma 4.2.1 Let A, B, and C be the three vertices of a triangle with sides |A— B| ~
|A—C| ~ 7, and |B—C| ~ nT with n < 1/3 (see figure 4.3). For positive \’s satisfying
)\1 + )\2 + )\3 =1 deﬁne:

t = )\1A+)\QB+)\30
s = MJA—t?+Xo|B—t]> + X3]C — ¢

Finally let Ay be one of {(1 — A1), Ao, A3}, Ap be one of {\1, (1 —X2), A3}, and Ac
be one of {1, Aa, (1 — A3)}.
In this situation there exists constants ci_s independent of n and T for which:

1
/dg)\\/)\l)\g)\g [3_2

&1

(4.6)

i
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Figure 4.3. The triangle ABC.

[ 5] < & (1)

c3  if neither of Agp or A¢ is

7376 chosen to be Ay,

Ca if exactly one of Ap, A¢ is (4.8)
nt8  chosen to be Ap, '

AsA A
/d%/AlAm {%

¢s  if both of Ag and Ac are

76 chosen to be \.

Proof We will write Ay = (1 — \;)f and A3 = (1 — A\;)f where 0 < § < 1 and
6 =1—40. c will denote a positive constant that is allowed to change from line to line.
It is easy to read from the geometry of figure 4.3 that when \; < 1/2, (equivalently,
when ¢t is in the left portion of figure 4.3)

syt > ¢ (00°B = C”+00°|B - CP* + \i7) > o7 (000° + 1) . (4.9)

Also, it is clear that the major contribution to (4.6), (4.7), and (4.8) comes from that
region when A\ < 1/2, and therefore (4.9) can be used to give upper bounds for the

integrals we are considering.
Taking for example (4.8) with Ay = (1 — A1), Ap = (1 — Ag), and A¢ = (1 — A3)

we get
/dQ)n/)\l)\Q)\g

M00(M + 00
A"‘ABAC} /de/ A\, Q00 )
70 ( 9977 + )
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The )y integral can be explicitly evaluated. In fact, for a small o one has

/a " VA —Va Vva N arctan(%) L
0 (a?

+2)° N 2a+a?)?  40?(a+ a?) 4a3 s

and

_ _ + <
a2+ )\)?  2a+a2)? 4(a+0?) 4o

and plugging these two estimates into (4.10) gives the required result. The other
assertions of the lemma are proved along the same lines.

Rlo

/a I\ VA Vaao? 5v/a 3 arctan (¥2)
o

O

4.2.3 Proof of the finiteness of diagram FE
It is sufficient to show that
T X, X ey Xppr) < /7. (4.11)

Let us first deal with the contribution coming from S¥*. Expanding S{* in powers
of )\1,

SPF = SPE 4N s (4.12)
we can use (4.6) and (4.7) and then all that is left to prove is:
Gignirywe X' (1) X7 (=) X () STV = O(n'#7%) 5 p=0,1.  (4.13)

This can be done by expanding all the terms in the above expressions once in powers
of n and once in powers of 7 and showing that the low order coefficients in each of
these expansions are zero. It is not hard to do it by hand, but as we are going to
encounter some very similar but a bit harder expansions later on we will not do it
here but postpone it to the appendix where it will be shown how all these expansions
can be carried out in a uniform way using a computer.

The terms involving S;jk are dealt with in a very similar way. Clearly, each of the
factors of Séjk is made of three summands, whose coefficients exactly correspond to
the various possibilities for choosing A4, Ap, and A¢ in the lemma 4.2.1. Keeping
(X, —t)" unexpanded and expanding only the last two factors of S;Jk in powers of Ay,

SFF = SPIE 4 N Sy E 4 N2, (4.14)
and keeping in mind (4.8) what is left to prove is

(

O(n*1%) for p =0,

Gijhirjris X (1) X7 (=) X ¥ () S8 = ¢ O(nt°) for p =1, (4.15)

O(7°) for p = 2.
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Again, the relevant expansions will be shown to vanish to the required order in the
appendix using a computer.

4.3 The invariance of Wg

4.3.1 The regularized W,

We will now show that W, is indeed a knot invariant — that it is not changed
under infinitesimal deformations. The proof presented here should be similar in spirit
to invariance proofs (that are yet to be found) of higher terms in the perturbative
expansion — we will first write a diagrammatic argument, and then supplement it
with the required analytical details. As in the case of the analysis of the variation
of the self linking number in the previous chapter, in analyzing the variation of W,
we will need take derivatives of Vj;;, and of V;; near the diagonal where there are
singularities which will prevent a straight-forward invariance proof. To avoid these
singular points define W, to be given by the same integrals [£(D) and [€(F) as
W, only with the integration domain restricted by the condition that the s’s would
be at least € apart — for ¢ # j we require

|si — sj] > e. (4.16)

We will denote these integrals by D, and E., and the finiteness of W, that was proven
above just means

1 1 1 .
Wae = —ZDE + gEE PRI /E(D) +3 /£(E) =W. (4.17)

4.3.2 The variation of Wz

We will now vary D, and F, under an infinitesimal deformation of X given by X —
X+w. It will be a lot more instructive to perform those calculations diagrammatically
instead of working with the explicit formulae given for D and F in (4.2). First, let
us vary D.. When X moves to X + w it swaps an infinitesimal surface S, and our
quantity of interest 6D, is given by the evaluation of d“V on S which after using
the key relation (3.2) reduces to diagrams D3 and D4 and by two boundary terms,
diagrams D1 and D2:

DE D2 U_)E

8 =
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S y S
+4 =4D1-D2)+ 4
D3 . .
X S X
£
=4D1-D)+ 4 " g
X XES

In these diagrams a dashed line represents as before the gauge propagator V;;
evaluated between the two vectors marked at its ends, a dotted represents the (2,0)-
form F', a d symbol stands for exterior differentiation applied to the nearby end of
the nearby propagator, and an ¢ between two interaction points on the knot means
that these points are exactly € apart.

Similarly we can vary FE,:

T
S =

= 3(E1-E2) +
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The diagram E3 appears because (3.2) is true only off diagonal. Actually d-V
and —d®F differ by a «F of a d-function as was shown in the derivation of (3.2).
Integrating by parts and using Leibnitz’s rule we get:

S S

g7 . E S ES S E._ E9 S

X o
X o
X
m

4.3.3 The invariance proof

To show that Wg is indeed an invariant we first need to show that the limit as ¢ — 0
of §(— 1D, + 3 E,) vanishes. That is, we need to show that

lir% -D1+D2—-D3+D4+FE1—-E2+E3—-FE4+E5—-FE6+E7T+ ES8—E9=0.
€e—

38



In fact, we will show that

lin% —D1+ D2+ E3=0, (4.18)
€e—
lin% —D3+ D4— FE4+ E5 =0, (4.19)
€e—
and
lim F1 - FE2—-FE6+ E7T+ E8— E9 =0, (4.20)

e—0
independently. For convenience, the symbol [. will denote integration in which the
integration variables are constrained to satisfy the restrictions (4.16), we will write
X, for X(s,), and similarly for X,, X, and w,.
Proof of (4.18) Diagram D1 represents the integral

D1 = = [ ds1 s SV (X, X)XV, X0)XE 0 si=se (421)
diagram D2 reads
D2 = /edsl_gXéwi“Wj(Xg, X)XIVa(X0 X)XE 0 si=sste (4.22)
and diagram E3 is given by
13 = — [ dsy s X0 Vi (X5, X)XV Xy, X)X (4.23)

Using
mik _ gisk _ sk gi
€pnm€ " = 0,0, — 0,0,

we can write £3 = E3' + E3" with
B3 = — / dsy_ 3 Xiwh Vi (Xa, X1) X7 Vig (X3, Xp) XL, (4.24)

and
B3 = /dsl,g)'(gwg;mj(xg,XI)X{VH(X?,,XQ)X;. (4.25)

The nearness of s3 and s4 clearly implies that the integrand in (4.21) converges to the
integrand of (4.25) and the integrand in (4.22) converges to the integrand of (4.24) as
e — 0. At the region where s; and s, are farther from s34 than some fixed but small
positive constant 7', there is no problem with commuting integration with taking the
e — 0 limit. Concentrating first on comparing diagrams D1 and FE3" we see that
nothing particularly harmful happens if just |s; — so| is small — as it was shown in
chapter 3 the integrand in this case remains finite. Otherwise, we are looking at one
of the following exceptional cases (assuming for simplicity that s, = 0, s3 = —¢, and
X4 = 0)

Case 1: Disregarding the propagator connecting X, and X; = 0 the difference
—D1 + E3" reads:

/T 81det (w(=e) [ X1 X (—€) = X1) _/Td 1det (w(0) ’Xl‘X(O)—Xl)‘
‘ (X (=€) — X3 ‘ [X(0) = X4 3

(4.26)
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Case 1. — +

D1 E3”

Case 2: _ +
S S
S
27F0 2%

Figure 4.4. The two exceptional cases for D1 «» E3".

Expanding the integrands in (4.26) in powers of s; we can ignore all terms of order
smaller than 1/s; — evaluating the integrals in (4.26) for these terms would give a
result bounded by a constant multiple of 7" in the ¢ — 0 limit, and as T" was chosen
small we can indeed ignore the contribution to (4.26) coming from these terms. There
are no terms of order higher than 1/s; in (4.26) and the term of order 1/s; reads:

/Tds< 1 det (w(—e) [X(—e)| X(~e)) 1det(w(0){X(0)X(0)))
T 2

s1 +€) X (—€)|3 251 X (0)f3
at the e — 0 limit we get

det (w(0) (.X(o)\)'é(o)) /Td81< 1 _i) _)_det (w(0) {X.(o)\)'é(o)) 10g2'
21X (0)[? ‘ site 5 21X (0)[?

(4.27)

Reinstalling the propagator connecting X, and X, and the integration over s, we get
the only non-vanishing contribution to —D1 + F3".
Case 2: Here the € — 0 limit is in fact zero. To see that, one does analysis similar to
the previous case, and notices that ss is integrated over an interval of length smaller
than s; and thus remembering that the propagator connecting X, and X, is finite
even near the diagonal the sy integral is ~ s;, and this additional factor is sufficient
to make the contribution coming from this case vanish.

A similar analysis to the above shows that the only non-vanishing contribution
to D2 — E3' comes from the case parallel to case 1 here, and that, in fact, these
contributions exactly cancel.

40



Proof of (4.19) Here are the integrals corresponding to the relevant diagrams:

—-D3 = —/d81_3XfWk(X2,X4)X%X{W{Fij,_(X1,X3), : S4 = S3 +6,(428)
D4 = /dsl_3X§vkl(X3,Xl)X{X;ngij,_(XQ,X4), C s =sste, (4.29)
1 ) ) L
—FE4 = 3 / ds1_3 X5 €pmn€™ Vi (X3, X1) X1 Ey; _(Xo, X3) Xiw?, (4.30)
1 ) ) L
B5 = — / ds1_ 3 X Eepmn€™™Vy( Xy, Xo) XLF, (X1, X3) Xiwd (4.31)

Using
mnp __ p
€kmn€ T = 20,

and the nearness of s3 and s, it is clear that so long as X; and X, are far away from
X3 the integrands of (4.28) and of (4.29) converge to the integrands of (4.31) and of
(4.30) respectively, and that there is no problem with commuting integration with
taking the ¢ — 0 limit. The cases when X; and X, are not far away from X3 can be
treated in the same way as in the previous proof.
O

Proof of (4.20) It will be convenient here to replace € by 2¢ and then take the e — 0
limit. In all of the relevant diagrams two of the s’s are constrained to be exactly 2¢
apart and the third to be farther then 2¢ from any of the previous two. It is harmless
to assume that sy = —¢, s3 = ¢, X(0) =0, and s; = 7 with |7| > 3e. We will denote
the ratio ¢/7 by 7.

With these notations one can see that the integrands corresponding to our dia-
grams can be written in pairs as follows: (ignoring the overall coefficient —1/167)

Fl1-F2 = Z Gijki’j’k’Xi’wiﬁnTXk’ Tijk(XT, X*BHTJ XBWT)

Bt
B=+
—B6—E9 = Y emmep Xl Xh T%(X,, X g7, Xgyr)
B=+

ET+E8 = Y €mmjemniX sy w" s XETH (X1 X e, Xgr)-
==

Remembering (4.5), (4.12), (4.14), and lemma 5.1 we see that in considering the
€ — 0 limit we just need to show that

dr i o . )
i P dagl A1l J k <€1: m, nyl
8 or et it (Bighirne X7 g X B emmice X'y Xy,
' ! ik
e ki X g " g XL ) SPUR = 0(4.32)

and that
(same)

lim p
=0 J3e<|r|<T N*T

dr = O(T) (4.33)
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where 7' is some fixed small positive number and a and b are the exponents of  and
T as in equations (4.6), (4.7), and (4.8).

As in (4.32) 7 is bounded from below we can use € = n7 to replace the limit there
by an n — 0 limit and then all that is required is to show that the summand there is
~ 11 The relevant algebra will be carried out in the appendix using a computer.

The integration domain in (4.33) is symmetric and therefore we can replace the
integration there with an integration over 3¢ < 7 < T, replacing the integrand with

> (Gigriyw X 5 X5+ emmieie Xhwp, X, (4.34)
B ==
a ==+

"
+€mnj6lkiX B _,ngl )5?,2

T—QT

Simply integrating over 7 now shows that to conclude the invariance proof we just
need to show that (4.34) = O(n®r?). Again, the relevant algebra will be carried out
in the appendix using a computer.

O
Conclusion of the invariance proof What we’ve shown so far is that

lim 6V, = 0 (4.35)

but what we need is
) <lim Wy ) = 0.
e—0 ’

Namely, we need to know that we can “commute” the ¢ — 0 limit with taking the
variation ¢/dw. This follows from the following fact:
Fact If X() :— R3; t € [~1,1] is a smooth family of parametrized knots, then the
convergences in (4.17) and in (4.35) are uniform in ¢.

To prove this fact simply observe that all the estimates in section 4.2 and in this
section were, in fact, uniform for families of parametrized knots having a uniform
upper bound on their first, second and third derivatives, a uniform lower bound
on their first derivative, and a uniform lower bound on their distance from “self-
intersecting”.

(Il

4.4 Identifying W,

The last assertion of theorem 2 is that the invariant W, that we have produced
is essentially the second non-zero coefficient in the Conway polynomial of X. The
Conway polynomial is defined by its behavior under flipping a crossing in a planar
projection, so we will try to understand how W, changes under such a flip.

Very briefly, it is clear that the difference in the value of W, before and after a
flip comes from a singularity in either of V;;; or V;; at the point where the flip occurs.
Using the invariance that we have just proven one can ‘straighten’ the knot near a
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Figure 4.5. The change in W, under a flip.

crossing point before flipping, and then it is easy to check in this case Vj;;, contracted
with the tangents of the knot in fact vanishes near the crossing point except if one of
its arguments is on the upper branch of the crossing and the other is on the lower.
Vijr is then inversely proportional to the distance between its two arguments, and
the fact that 1/r is integrable on R? shows that this singularity can be neglected.
Similarly considering diagram D one finds that the only singularity that remains is
the one that occurs when the two arguments of the same propagator are arranged as
propagator 1 in figure 4.5, and the other propagator can then be assumed to be away
from the crossing. Repeating (3.4) for propagator 1 and then integrating over the
location of the other propagator, marked 2 in the figure, it is clear that effectively we
are calculating the linking number of the two knots that are created if the original
knot is cut at the crossing as in the figure. It is easy to check from the definitions (see
[31]) that this is exactly the same relation as the one that is satisfied by the second
non-zero coefficient in the Conway polynomial of X, and so they coincide up to a
constant shift. This constant shift is given by W;(unknotted circle). By invariance
we can just calculate W;(the unit circle in the XY plane) and an explicit calculation
shows (see [25]) that

~ 7'['2
W;(the unit circle in the XY plane) = Y

This concludes the proof of theorem 2.

4.5 Appendix: Some algebra

We include here the short computer routine that verifies few assertions that were
made in sections 4 and 4.3. First, the routine itself. It is written in Mathematica™
— a symbolic mathematics language. For more information about this language see
[48].

X[mu_] := {X1[mu],X2[mu] ,X3[mul} ; Xd[mu_] := D[X[nu],nu] /. nu -> mu
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X1[0]1=X2[0]1=X3[0]=0 ; wlmu_] := {wilmul, w2[mu], w3[mul}
ser[expr_] := Series[#,{var,0,ord}]1& /@ expr

Xdtau = ger[Xd[a tau]l] ;  wtau = ger[w[a taul]
Xdeps = ser[Xd[b eta taull ; weps = gser[w[b eta taul]
Xdnegeps = ser[Xd[-b eta taull ; wnegeps = ser[w[-b eta taull

t = lambdal X[a tau] + lambda2 X[-b eta tau] + lambda3 X[b eta tau]
z1l = X[a tau] - t ; z2 = X[-b eta tau] - t ; z3 = X[b eta tau] - t
delta = IdentityMatrix[3]
S=Table[ser[Which[
var==eta,{(z1[[i]lldeltal[j,k]11+z2[[jl]ldeltallk,i]1]1+z3[[k]l]ldeltal[i,j1])
/. lambdal -> c2 eta ,
z1[[i]1] (Expand[z2[[j11z3[[k]]1]
/. {lambdal~2 -> c5 eta”"3 , lambdal -> c4 eta"2})/eta"2},
var==tau,{(z1[[i]l]ldeltal[j,k]1]1+z2[[jl]ldeltal[k,i]]
+z3[[k]lldeltal[i,jl1])/tau, z1[[i11z2[[j1]12z3[[k]1]l/tau~3}1],
{i,3},{7,3%},{k,3}]

sign = (Signature /@ (perm = Permutations([{1,2,3}]))
eps[f_]:=Sum[sign[[pllsign[[q]l] (f@@Join[perm[[p]],perm[[q]l]]1),{p,6},{q,6}]
six[f_]:=eps[f[#3,#1,#4,#6,#2,#5]1&] + eps[f[#6,#1,#4,#2 #3,#5]&]

el[type_] :=

six[S[[#1,#2,#3,type]l]lXdtaul[#4]]Xdnegeps [[#5]1]1Xdeps[[#6]11&] /. b->1
el2[type_]:=six[S[[#1,#2,#3,type]l]lXdtaul [#4]]wnegeps[[#5]]Xdeps[[#6]1]&]
e69[type_] :=eps[S[[#3,#5,#6,typellwtaul[[#1]]1Xdtaul[ [#2]]Xdeps[[#4]1]1&]
e78[type_] :=eps [S[[#6,#3,#5,typel ]Xdnegeps [ [#1]]wnegeps [ [#2]1Xdtau [ [#4]1]&]
de[type_] :=Sum[el2[type] + e69[type]l + e78[type] , {b,-1,1,2}]

The first paragraph of the routine defines X, X, w, and their expansions with
respect to the externally defined variable var to order ord at the points ar, —e =
—0Bnt, and € = fGnr. -

The second paragraph defines S[[i,5,k,1 or 211 to be SP% , expanded with re-
spect to the relevant variable. § is defined differently for var=eta then for var=tau
— if var=eta then (4.6) and (4.7) mean that in S; one can make the replacement
lambdal -> c2 eta while (4.8) means that in Sy the replacement {lambdal~2 ->
c5 eta”3 , lambdal -> c4 eta~2} can be made. It is easy to see that after the latter
replacement has been made the expansion for S, will begin at n?, and this justifies
dividing it by n? and expanding everything to an order two less than is mentioned in
sections 4 and 4.3. If var=tau the expansions for z1, z2, and z3 begin at 7, and thus
the deﬁnhﬁonsS[[i,j,k,l]]::S?k/T and S[[i,j,k,2]]::5§k/r3.ffhm allows us to
expand S[[i,j,k,1]1] (S[[i,j,k,2]11) to an order lower by one (three) than the order
required for S7% (SF).

The third paragraph contains the routines that do the €... and the 6...... contractions,
and the last paragraph defines the relevant diagrams.

We now include a Mathematica™ session produced using the above routine, for
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which I have chosen the not very imaginative name “file”.

Mathematica (sun4) 1.2 (November 6, 1989) [With pre-loaded data]
by S. Wolfram, D. Grayson, R. Maeder, H. Cejtin,
S. Omohundro, D. Ballman and J. Keiper
with I. Rivin and D. Withoff
Copyright 1988,1989 Wolfram Research Inc.

In[1]:= var=eta; ord=1; << file
In[2]:= {e[1] , e[2]} /. {a->1 , eta—->0}
Out [2]= {0, 0}
In[3]:= {del[1] , del2]1} /. a—>1
2 2
Out[3]= {0[etal , O[etal }
In[4]:= var=tau; ord=1; << file
In[5]:= {Sum[e[1],{a,-1,1,2}] , Sum[e[2],{a,-1,1,2}]1}

2 2
Out[6]= {0[tau] , O[tau] }

In[6]:

var=tau; ord=2; << file

In[7]:

{Sum[de[1],{a,-1,1,2}] , Sum[de[2],{a,-1,1,2}]}

3 3
Out [7]= {0[tau] , O[taul }

Out [2] and Out[5] prove equations (4.13) and (4.15), while Out[3] and Out[5]
prove the assertions at the end of the invariance proof in section 4.3. This concludes
the proof of the main theorem of this paper.

Remark Obtaining these eight expansions takes few hours of CPU time on a 1989
workstation.
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Chapter 5

The stationary phase
approximation

The purpose of this chapter! is to compute and examine the consequences of the
stationary phase approximation of section 1.2.2. In [42] Witten has calculated the
stationary phase approximation for the Chern-Simons path integral, finding that the
effective coupling constant is shifted by half the Casimir number? ¢5(G) of the adjoint
representation of the underlying group relative to the bare coupling constant k. His
calculation was restricted to compact simple gauge groups, and one of the purposes
of this chapter is to examine the (somewhat different) case of non-compact simple
groups. The results of this chapter were obtained jointly with E. Witten, and are all
included (in a somewhat different format) in [7].

5.1 Introduction

Recall from section 1.3.3 that the quadratic part of the gauge fixed Chern-Simons
Lagrangian is given by

k . .
kes(Ao) + - /M3 & (A A DA+ 26D A" 4 QEDZAODAO’ZC) (5.1)

where D40 denotes covariant differentiation with respect to a background flat con-
nection Ag. If the gauge group G is simple and compact, then the inner product

(pr02) = = [ V(o) (52)

! Actually, in the logical order of things, this chapter deserves to appear before chapters 3 and 4.
However, due to its less complete and less rigorous nature I've decided to place it after those two
rigorous sections.

2The Casimir number c3(R) of a representation R of a simple Lie algebra G relative to some
pre-chosen invariant bilinear form t on G is the ratio trg/t. Namely, ¢2(R) is the constant for which
treR(G.)R(Gy) = ca( R)&G, Gy for every Gap €G.
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is positive definite®, and we can rewrite (5.1) as

kcs(AU)—£<< ‘2),#0 < ’; >>+%<5,A/‘00>

where A“0 is the covariant Laplacian and L“° is defined as in section 3.1:

JA=A
Jo=—6

repeating the same? analysis as in section 1.2.2, we thus find that to lowest order in
1/k,

L% = (D" x4+ % D")J

Ag
%e—z%sign L’jo 6ik cs(Ag)

WM k)~ Y
flat Ag \det LA

(Here we have ignored an Ag-independent infinite power of 47k).

The problem with the above formula is that as it stands, det A4, det L, and
sign L are all meaningless due to the infinite dimensionality of the spaces involved.
A way around this was found by Ray and Singer [37] — they show when L is a suitable

operator, the sum
C(L,s) = > A¢

eigenvalues A of L

converges for Re(s) large enough, that the resulting (-function has a meromorphic
continuation on the entire s plane, and that it is analytic at s = 0. Finally, they
define

det L = ¢ ¢'(1) & o~C'(2.0)

Clearly, this definition agrees with the usual definition of the determinant in the finite
dimensional case.
Similarly, one can define (following Atiyah, Patodi, and Singer [5])

n(L,s) = > A *sign A

eigenvalues A\ of L

for Re(s) large enough, analytically continue to s = 0, and set
sign L = n(L) dof n(L,0).
With these definitions, we can set
Wyeaularized > exp <1C' ((Lf°)2> - (AA°)> exp —i%n (L’i‘o) exp ik cs(Ay).

flat Ag 4
(5.3)

3Here we have restricted our choice of t a bit further. Not only do we require that it will be
invariant, namely a multiple of the Killing form, but we also insist that it will be a positive multiple
of the negative definite Killing form.

4But remembering that for Fermionic Gaussian integrals [ dédce®® oc det(J) as in (1.13).
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. larized . .
In the process of defining Wy¥"“"*** we were forced to introduce a metric on M?3,

and it is now not clear that our definition is independent of the choice of that metric.
Part of the answer was already given by Ray and Singer in [37] — they proved that

the ratio of determinants
1 ! A 2 ! A
e (3¢ ((22)7) = ¢ (am))

is, in fact, metric independent?®.

The signature n(L”°) turns out to be trickier. We will see in the next section
that for an arbitrary connection A (not necessarily flat), the variation of n(L4) with
respect to A is given by

on (L2) = —%f) /M3 wdA N FY. (5.4)

™

This implies®

n (Lfo) —-n (L‘l) = —ZCQW(Q)CS(AO),

where LY is the standard L_ operator (d x + % d).J twisted by the zero connection.
Therefore, the “second half” of (5.3) can be rewritten as

exp 2%77 (Lfo) exp ik cs(Ag) = exp —i%n@_) expi(k + c2(G)/2)es(Ag). (5.5)
The shift £ — k + ¢3(G)/2 in the above formula is exactly the famous “shift in &” of
Chern-Simons theories.

We still have to analyze the metric dependance of Wi®™ %4 __ namely, the metric
dependance of n(L_). Here we can appeal again to the Atiyah-Patodi-Singer theorem,
which, in this case, says that

on(L_) 1 Swy s Ocs(w?)
sg 1272 /M3 i dg A= 6mdg (5.6)

where RY is the curvature of the Levi-Civita connection w? of g. The situation now is
.. . larized - . . .

similar to that of section 3.4 — W;¥“"*"*** ig not invariant, but it can be ‘corrected’

to give an invariant

Wgenormalized def Wg€9Ula7“iZ€d6idi$G cs(w?)

at the cost of having to frame M? — to choose a homotopy class of trivializations of
the tangent bundle of M3 — so that cs(w?) can be defined unambiguously.

5They have also conjectured that that ratio is equal to the square root of the Reidemeister-Franz
torsion of M? with coefficients in the representation of 1 (M?) determined by Ag. This conjecture
was later proven by Cheeger [15] and Miiller [32] independently.

6This result can be deduced directly from the Atiyah-Patodi-Singer theorem [5].
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5.2 The variation of n in the compact case

As a warm-up for the more challenging case of a non-compact group, in this section
we will prove formula (5.4). For simplicity we will perform all our computations on
a flat R®. A more complete treatment can be found in [7].

The first step is to rewrite LA:

0
LA = o, -+ AL
o)

Here oy, 09, 03 are the matrices representing multiplication by the quaternions i, 7, k
respectively on the four dimensional real vector space V' underlying the quaternions
H:

0 -1 0 0 0 0 —1 0 00 0 -1
1t o0 0| oo o 1| _ _[0o0-10
710 0 0 1|71 0 0 0| lo1 0 o0
00 1 0 0 -1 0 0 10 0 O

This differential operator acts on V ®G-valued functions on R3. The {0;}’s satisfy
the following commutation relations:

{O'Z',O'j} = —2(51']' (57)
[O'i,O'j] = 26ijk0k- (58

We will attempt to calculate n(L*) using a result derived in [1] and in [11], and
reviewed in [7]:

Theorem 3 The variation of the n-invariant n(D) of a differential operator D acting
on a three dimensional space is given by

20,
NZS

where the form C_y 5 is related to the asymptotic expansion of the heat kernel of D?
by

d[n(D)] =

C_ C_ C_
3/2 n L 1/2

Tr(6D exp —tD?) = 372 ; 12

If D* = —(A + F) and the operator F' can be considered as ‘small’ relative to A,
one can determine the coefficients C_,,, using

<x ‘et(A+F)‘y> N <x‘em‘y> +/0tds <x

"The T of Trin the formula below is capitalized to emphasize the infinite dimensionality of the
space involved.

65AFe(t—5)A‘ y> 4o
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To apply theorem 3, we first need to calculate (L4)2:
(LN? = 0,0(0; + A)(0; + Aj) = 0,0,0;0; + 0,00 0 A; + 0;0;A;0; + 00, A, A;
using Leibnitz’ rule
= 0,0;0;0; + 0;0;(0;A;) + (0i0; + 0,0;)Ai0; + 0;0;A;A;
And replacing each o;0; by 5 ({0i,0;} + [0i,0;]) = —0;; + €60k we get
= —A — (0;4;) + €ijkop(0;A;) — 24,0; — AiAi + €0, AiAj.

Now, according to theorem 3 the variation of 7(L“) under L4 — LA+4 that is

to say, under
9l + — 0 o + A +

is given by —C\’/%/Q where C_y ), is given by:

C_1)2 t
oy :/tral5Al/0 ds <x

and where F' is given by:

eSAFe(t’S)A‘ x> ,

= (81141) — €ijkO0k (&A]) + 2A281 + AZAZ — Gijko'kAiAj-
There is now no need to calculate — it is clear that as
tT‘O’l =0 ) t’I“O'lO'k = —45”C

we will have

C_1)2
$1/2

t
= /4157“(5141 (eiﬂ(aiAj) +€ileiAj)/0 ds <$

esAe(t—s)A‘ QT>

(The expressions 0;A; and A;A; can be assumed to be independent of x — it easy is
to see that their possible dependence would have anyway lead to lower order contri-
butions). Using now the convolution property of the heat kernel we find that

C_yjp = / treind Ay (04 + AA,) w0 Ay (9A; + A A;)

= o f
proving formula (5.4).

Remark. It is clear from the above calculations that when we calculated (L4)? we
could have ignored every term that has no ¢ matrix in it — because those terms when
multiplied by 0,0 A; end up having exactly one ¢ in them, and thus end up having
zero trace. In fact, one of those terms, A;0;, gives a vanishing contribution to the end
result for another reason as well. Let us try to calculate the contribution due to it:

/tr0l5Al /Ot ds <x

20

65AAiaie(t—s)A‘ l‘>



Again the dependence of A in = can be ignored as it leads only to lower order contri-
butions, and we see that we first have to evaluate

esAaie(t—s)A‘ l‘> )

We can now use the fact that the integral kernel for the solution of the heat equation
is a symmetric function of z and y to replace the above expression with:

AZ%<x e

sAe(tfs)A ‘ y>

y=z

Using the semigroup property of the heat kernel we get

e (ale]s) = e (o

_(e=p?
e 4t

=0.

y==

')

Clearly, a similar calculation will show that even if F' had any other terms which
are first order differential operators those would have added no further contributions
to on(L4).

dy; (471)372 By,

5.3 The variation of n in the non-compact case

If the gauge group G is simple but not compact, then the inner product (5.2) is not
positive definite, and the analysis of (1.5) breaks down. The reason for that is that in
section 1.2.2 the phase of the integral was determined by the signature of the quadratic
form approximating the Lagrangian near a stationary point. This signature is equal
to the signature of a linear operator representing this form using a positive definite
inner product, but if the quadratic approximation is written using an operator and
an indefinite inner product, then its signature is effected both by the indefiniteness
of the operator and that of the inner product. However, this can be easily resolved
— all that one has to do is to pick a positive definite inner product and to reexpress
the quadratic part of the Lagrangian in terms of the new inner product.

Pick a maximal compact subgroup G° of G, and a positive definite inner product
on G invariant under the Adjoint action of G, such that if G is written as the direct
sum of the Lie algebra G° of G¢ and its orthogonal complement G, then the original
bilinear form that we started with, , is given by the matrix

d_ef [CC 0
"mlo - )

(I and 1™ are, of course, the identity matrices of End[G‘] and End[G"], respectively).
Also, it is more convenient to replace the original gauge condition %DZAZ' = 0 by
%nDiAi = 0. With these choices made, the operator to consider is not the same L™,
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but a slight variation of it L4, which will presently be described. Let ; € End[G ® V]

be given by:
L def [ I ® 0y 0

Where 7; € End[V] are given by multiplication by the opposite orientation quater-
nions:

0 -1 0 0 00 -1 0 00 0 -1
_ 1 0 0 0 _ 00 0 -1 _ 00 1 0
=10 0 0o 172710 0 o0 |"®Tlo0o 10 0
0 0 —1 0 01 0 0 1 0 0 0

It is useful to note that the ’s satisfy the following commutation relations:

After all those preliminaries, we can finally write LA

A 5 (i T A2~> :
ox!

Similarly to the compact case, we start our calculation by calculating (iA)Q. Re-
membering the remark at the end of the previous section, we find that

[(iA)Q]relevant - 5’15'96269 + 5’25'3(6214]) + &i&jA?jAj
(here the superscript 6; denotes conjugation by &, — Afj def 5]-_114163'). Using 0,0; =
1 ({0i,6;} + [6:,5;]) and equation (5.10),(5.11), we see that up to irrelevant pieces,
the last expression equals

—A + neijk&k(aiAj) + nqjk&kAfj Aj.

Just as in the compact case treated in the previous section we find now that the
variation of n(L4) under LA — LA+ that is to say, under

. (0 (0
(o} (@ +Al> — O] (@ +Al +(5Al>

is given by —C’—\/%“ where C_; 5 is given by:

C 1)z . ¢
oy :/traléAl/O ds <:c

and where F' is given by:

esAFe(tfs)A‘ l‘>

F = —ne;x0y, ((OiAj) + AfjAj) '
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Therefore, we find that
\/7_T677(ff4) = /trqjﬁA;”n (@AJ + AZ&JA]) . (512)

We will now check that the last result, eq. (5.12) can be easily interpreted to
be to the variation of the Chern-Simons number of the projection onto the subspace
of compact generators of the connection A, with a coefficient proportional to the
difference of the Casimir numbers of the representations of G¢ on G¢ and on G".

We first wish to understand matrices of the form A;’. Decomposing

A A
= )

according to the decomposition G = G° @ G", it is easy to check that the answer is:

- ch T‘Agn
g5 __ i J44
A = ( T AP AW )

where 7; o —0;0; = —0;0;. Notice that the matrices 7; are always diagonal with

two 1’s and two —1’s on the diagonal:

-

10 0 0 1 0 0 0 1 0 0 0
o1 o o _ _[o-10 0 1o -1 0 0
T=1loo0o -1 0" 1o o0 10 |’ 10 0 —-10

00 0 —1 00 0 —1 00 0 1

We now come to understanding —/70n(L*)/2, that is, to understanding

1 def 1 5 3
071/2 == W / tTGZ’jl((Sl + 62) == W / tTGijl(SAlln (@A] + Az A]) .

Writting

: SAF oA

o1 __ l 1943

6Al o ( 7'1514?6 (SAZm >
we see that
5 _ ( BAFOAT — A0 AT .
L= " NEAD, AT — §ATm, AT

But the traces of the matrices 7; vanishes, and so
treijdy = Atreg (OAF°0AS — SAT" 9 AT™) . (5.13)

Similarly, we perform matrix multiplication and find that (for the same reason as
before we can ignore terms in which a matrix 7, ; appears. In fact, we can even
ignore terms in which a product 7;7; appears - this is because the anti-symmetrization
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€;;1 constrains [ and j to be different, and it is trivial to verify that for different [ and
j one has trnr; = 0.)

B OAJCACAY *
treijids = treg ( . —§Apm Ann g )
and so
tT‘Gijl52 = 4t7"€ijl ((SAE:CA;:CA(;C — (SA;mA;mA;m) (514)

Equations (5.13) and (5.14) together show that C_;/, is in fact the variation of
the Chern-Simons number of the projection a of the connection A onto the subspace
of compact generators, with a coefficient proportional to the difference of the Casimir
numbers of the representations of G° on G° and on G":

677 zA 1 i cc cc cc pcc nn nn nn Ann
;A ) _ _P/eal (rgeB AFE(, A + ALAS) — trgnd AP (9, A" + A" AT™))

_ 28 =00 [ st 9, + ) = -2

c2(G¢) — co(G™) 5cs(a).

2 oa

(5.15)

If one ignores the difference between A and a, the above result means that in the case
of a non-compact gauge group the effective value of k is shifted by (co(G¢) —c2(G"))/2
similarly to the shift & — &k + ¢5(G)/2 observed in the compact case in (5.5).

The difference between A and a is a bit disturbing, however. The projection
P : A — a depends on a choice of a non-ad-invariant positive definite metric on G
and is not gauge covariant, making the result (5.15) not gauge invariant. This is a
similar situation to the one encountered in (5.6) where the metric independece was
broken by the regularization and the difficulty can be solved in a similar way — by
adding to the original Lagrangian a local counter-term AL that depends only on A,
g and the pointwise choice of the projection P. The required counter-term is

CQ(QC) — C2

AL —
£ 327meq (G

()g ) / trg[DAT, T] A FA
where D is the covariant exterior derivetive twisted by A, F'4 is the curvature of A,
and T = P — P*. Indeed one has

CQ(QC) - CQ(Q”)
2

(G°) — c2(G")
2

cs(a) + AL = @ cs(A)

correcting the non-gauge-invariance of (5.15).
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Chapter 6

Some non-perturbative results

In [42] Witten has shown that the computation of (1.2) can be reduced to a problem
in conformal field theory which can be solved giving a non-perturbative definition for
the infinite dimensional integral (1.2). Before going into our perturbative analysis,
let as first review his non-perturbative results.

Witten’s definition is quite successful in that he can show how to use it to evaluate
(1.2) precisely for every three manifold M? and link X in it, and not just calculate
its leading large k asymptotics for R?, but it is less elementary and very particular to
the Chern-Simons theory. There doesn’t seem to be any direct relation between his
way of calculating and the perturbative calculation shown here, and it is interesting
to compare the two view points. Let us start by reviewing his results for a link in
R3, as presented in [43]. As is shown there, W(R3, X, k) considered as a function of
k and the gauge group G = SU(N) is in fact up to a simple change of variable the
HOMFLY [23] polynomial of the link X', which itself is a generalization of the Jones
polynomial of X.

Witten shows that to define W(R?, X, k) unambiguously one needs to consider
framed links instead of just links. That is to say, each component X, of the link
has to be accompanied with a prescribed ‘framing” — a choice up to homotopy of a
nowhere vanishing section F, of the normal bundle of X, or, more geometrically, a
choice of a ‘shadow’ for each component as in the figure 6.1.

According to Witten, if the framing of link changes by a single twist, W get
multiplied by e?™"  where h is a real number determined by & and the representation
R, corresponding to the component of the link on which the twist was made. This is
shown schematically in figure 6.2.

In the case where the underlying group G is SU(N) for some positive integer N,
and all the representations R, are just the defining representation of SU(N) in cV,
h is given by:

. N*-1
"~ 2N(N + k)

The difference between any two framings of a single knot is measured using a
single integer — the number of signed twists required to change one framing to the

h (6.1)
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Figure 6.1. A knot with two of its possible framings. (The arrows indicate the
differences between the two framings)

Negative twist Positive twist
' < ' < ' <
} :é [} )
<
- 2Tth _ :é _
e - < -
, <
F '/éj X =

Figure 6.2. The change in W under a single twist.
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other, and the above relation shows that for a link with several components we can in
fact consider two framings to be equivalent if the total number of twists required to
switch from one framing to the other is zero, counting all twists on all the components
of the given link. With this identification for each link X = {X,} in R? there is a
unique preferred framing — the framing {F,} for which the total linking number of
X is O:
£(X) « Z £(X71’F’Y2) =0
Y172

In this framing, Witten has shown that W(R?, X, k) has the following three properties
which allows one to calculate it for any given link:

1. For

q = eN+k (6.2)

one has

N/2 _ —N/2

q q

. . 3 _
W(unknotted circle in R°, k) = g

(6.3)

(In fact, this relation can be derived from the following two by using the third
relation on the unknot whose planar projection is oc)

2. If the link X is the unlinked union of X; and X, then

W(R? X, k) = WR?, X, E)W(R?, Xy, k) (6.4)

3. Most important — the so called “skein relation” — if the three links Ly, L,
and L_ differ only inside a small ball where they look as in figure 6.3,

L, -- . L, -~ ~. L. .- .
ré £ ré
4 \ 4 \ 4 \

/ \ 4 \ / \
/ \ / \ / \
1 \ ! \ ! \
1 \ 1 \ 1 \
| 1 | | | 1
\ I \ ] \ !
\ / \ 1 \ 1
\ / \ / \ /
\ 7 \ ’ \ G
N Y \ \ /

N 7’ N 7’ N s
\\ // \\ // \\ //
Figure 6.3. The links involved in the skein relation.

then the following relation holds:
—¢"PL+ (¢ —q ) Lo+ q "L =0 (6.5)

where for brevity we wrote L. for W(R3, L., k).
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To compare these results with ours we first need to expand them in powers of 1/k,

and thus we will write for a link L.
a. b
WR?, L., k)~ N® + — + —.
(R, L, k) ~ N° + 24

From (6.3) and (6.4) it is clear that c. is just the number of components of the link
L. if L. is the unlinked union of unknotted circles. In addition, the zeroth order part
of (6.5) reads —N“ +0+ N =0 and as L, and L_ always have the same number
of components it means that the number of components of an arbitrary L. is given
by c.. The terms of orders 1/k and 1/k? in (6.5) give the following two relations:

ay —a_ =2mi(NN* — N%), (6.6)

by —b_ = 2miag + 2miN(NN®* — N°©) — wiN(ay + a_). (6.7)

If L' is the same one component link as L, only with its framing twisted posi-
tively once, expanding the relation in figure 6.2 in powers of 1/k gives two additional
relations:

a=a" +mi(N? - 1) (6.8)
N2_1  N?2_1
b= b1 + miatW= = — (z’N2 + 2 - 1)) . (6.9)

Theorem 4 The following assertions hold for links in R3:

1. For a two component link L, T L —a, is 2mi times the linking number of its

N21)
two components.

2. For a single component knot L not necessarily with its preferred framing, ~st—

(N2-1)
s mi times its self linking number.

3. For a single component knot L not necessarily with its preferred framing,

p mRe (b — %) is framing independent, and is in fact equal to our

Wa(L).

All of these assertions are easy consequences of (6.6)-(6.9). For example:

Proof of 3 To get the framing independence of b just use (6.8) and (6.9) to express
it in terms of a®™ and b, and then notice that the resulting expression differs from
that of W only by the real part of an imaginary number. To show that b is equal to
WQ(L) we just need to show that they satisfy the same skein relation. But for knots
L. with their preferred framings a4y = 0 by 2, and therefore using (6.7) one gets

1 2m

b= = SRt ) = S

Qg

which by 1 equals to —47? times the linking number of the two knots obtained by
cutting L. as in figure 4.5. Tt is easy to check that b(the unknot) = —pi®/6. 0

o8



Chapter 7

Translating BRST to Feynman
diagrams

7.1 The BRST argument

To show that the Lagrangian that we obtained gives rise to a metric independent
theory in spite of the explicit appearance of a metric in it, we will now introduce the
‘BRST’ operator @ of Becchi, Rouet, Stora, and Tyupin [8, 39] — the odd derivation
acting on the space of all functionals of A, ¢, ¢, ¢, defined by the following formula:

J | J
— _(AQ..0 a pAb c a_ ~fa b c 7
Q - /M3< (alc + fbcA’LC )(SA;] + ¢ Sca + 2fbcc ¢ 560‘) ' (71)

Which is more conventionally written as:

QAz = —(8¢+ad Ai)C, (72)
Qo = 0, (7.3)
Qe = ¢, (7.4)
Qc = %[c,c]:%ga fede (7.5)

In (7.2) the expression “ad A;” stands for the operator defined by (ad A;)c™ [A4;, ],
in (7.5) and (7.1), f2 are the structure constants of G, [Gy,G:] = f{.Ga., and [c, ]
doesn’t vanish because of the anti-commutativity of c.

Lemma 7.1.1 QL (A, ¢,¢,¢) = 0.

Lemma 7.1.2 There erxists a functional A of A, ¢, ¢ and c (that depends on 6g*)
such that under ¢ — ¢ 4 g%,

6£t0t - QA

Lemma 7.1.3 ) corresponds to a vector field of zero divergence.
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Lemma 7.1.4 QO = 0.

Let us first use the above four lemmas to prove that
W = /Dcp Oe'Ftot
is formally metric independent [45]. Indeed, under ¢* — ¢ + §g*

50) = o / Dy O(p)eiLtor
= i/Dgp O(p)e“tot§ Ly,
= z’/Dcp Q(O(gp)ewwiA) . (7.6)

Here we used ¢ as a collective name for A, ¢, ¢ and ¢ and in the last equality we made
use of the first two lemmas. Now we just use the third lemma and the well-known fact
that the integral of a derivative taken using a divergence-free vector field is always
zero to conclude our proof.

Proof of lemma 7.1.1 This is just a simple calculation — one just applies Q to L;,;
and sees it after some algebra. I will present this algebra here in a way that will be
useful for our later purposes. First, let us decompose L;,; to a sum of it’s ‘free’ part
and it’s ‘interaction’ part, and to a sum of it’s bosonic part and it’s fermionic part:

£bos = £bos,free + £bos,int

k ok 9
_ AN dA + 260 Al —/ Z(ANAAA
47T/M3t1:( AdA + 260 )+47T M3tr3( AAAA)

['ferm = Eferm,free + Eferm,int = % /M3 t (Eazalc) + % /M3 t (Eaz [AZ; C])

Let us now calculate the variation under ) of each of those parts:

QLisre = —% [ elde+[A,) A dA+ 60,0 + ad A)c (7.7)
QLyosint = —% /M3 w(de+[A, ) NANA
= —%/Mgtrdc/\A/\A (7.8)
QLromree = % [ w000~ Sl ) (7.9)
!

QLtermint [ <¢>Di[Ai, o] + @i[dc + [A, ), c] - %cDi [4°, e, c]]) (7.10)

o

It is now easy to see that the first term of (7.7) cancels (7.8), that the second term of
(7.7) cancels the sum of the first term of (7.9) and the first term of (7.10), that the
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second term in (7.9) cancels the second order part of the second term of (7.10), and
that the remaining terms of 7.10 cancel.

O
Proof of lemma 7.1.2 Suppose that ¢ — ¢/ 4+ 6¢g”. Then
0Lt = o /M3\/§59’Tm‘
with
T, = & ((aiqs)Aj 1 (0:2)(9; + ad Ay)e
1
—59ij (Ok ) g™ A; + (0k€) g™ (0 + ad A))e
39 (
and then T;j = Q)\z] for
1
)\ij =t <(8ZE)A] — Egij(aké)g“Al)
that is:
k ij . 1 _ def
0Lt = Q (% /M3\/§59 Tt <(6ic)Aj - §9ij(3k0)gklz41>> = QA.
O

Proof of lemma 7.1.3

)
divQ = / -
v @ M3< dA¢
= / (_ gccc +0+ gccc) =0.
M3

0 19
ey a 4b (¢ a - a b c
(alc fbc iC ) (Séad) 2 8¢ beC € )

(Notice that for semisimple, Abelian and nilpotent Lie algebras each of the two terms
above vanishes independently).
O

Proof of lemma 7.1.4 This follows from the interpretation of O as the holonomy
of A along X, and the fact that the () variation of A is just the infinitesimal gauge
transformation corresponding to c¢. But for later reference, we can already write this
proof in terms of diagrams. First, let us write the diagrams representing O itself:

Next, let us calculate QO term by term:
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(=€ €0
€0
(-

Consider the terms that have an 0;c vertex in them. There is, of course, integration
over the position of this d;c, and this is the integral of a gradient which can be replaced
by a difference of boundary terms. These can be seen to be equal to the negatives of

the terms that have an [A;, ¢] vertex.
O

7.2 A simpler finite dimensional analogue

The invariance argument shown above is, of course, quite incomplete. It uses some fa-
miliar rules of integral calculus in an infinite dimensional setting in which the standard
integration theory does not apply. However, what we have described in section 1.2
can be seen as being a definition of an integration theory in our infinite dimensional
setting and we may wish to find how much of the standard rules of calculus still
apply. The goal is to show that enough of standard calculus goes through, and that
the invariance argument of the previous section can be translated into the well-posed
language of Feynman diagrams. This will be done in the following two sections,
beginning with a simpler finite dimensional example that highlights one of the key
points.

In this section, we will show that for any 1 < ¢ < N the perturbative expansion
of

ANz (0,P + ikPAgal + BikPAgjal o) Hhar e HAuirtelah) (7.11)
R

vanishes, where d, = 0/0x% and P(z) is some monomial in z. Clearly, what we are
now set to show is true — the integrand in the above integral is a derivative,

aq (P(x)ezk(2)\”z )+t el x )) :

and if we believe the fundamental theorem of calculus, we are done. But in the
infinite dimensional context that we really care about we don’t have the fundamental
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theorem of calculus and therefore we would like to fine a direct combinatorial proof
at the level of Feynman diagrams that (7.11) indeed vanishes.

Define
def Diagrammatic N ik(l)\ij xied Njjpatal zh)
— P J
C'= ipansion of /RN d"z (0,P)e™2 ,

def Diagrammatic N . 3k k(SN xiad g paial o)

e . Jk

= expansion of /N d”x 3ikP)jpa’ x"e'™ 2 i .

and

oot /RN ANz ik PAgal e (Aim e Hxpetal o),
It is clear that (7.11) is equal to C' + F + I. We will show below that F' = —I — C.

Following the rules of section 1.2.4, we see that the diagrams in F' have the normal
Nijrrixlxk vertices and A\ propagators, and in addition to them two distinguished
vertices. The first of these distinguished vertices corresponds to the monomial P
(see figure 7.1), and the second (denoted by the ‘magnet’ symbol (G ) corresponds

to iMg 2’ (see figure 7.2).  Let us take a closer look at the second distinguished
2
1
2
2 I

Figure 7.1. The vertex corresponding to the monomial z2z3.

(&

o——

Figure 7.2. The vertex corresponding to i)\qjxj has only one arc emanating
from it because i)\qjxj is of degree 1. The magnet points to the direction of
‘attraction’.

vertex (G . When it appears in a diagram, say as in

2
S 1
2 1

the A;; in the vertex = gets multiplied by its inverse — the propagator connecting
(& to * — and so the whole picture can be replaced by the vertex
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=

2 1

which is one of the vertices corresponding to —d,* ! Remembering that = could
have been connected to any of the other slots in %, we see that altogether all the ways

to connect (& to * add up to give exactly the vertices that correspond to —0,*. Now

there are two possibilities for what * could be. If x is one of the regular \;;.z'z/z*

vertices, then the process we just described (of ‘pulling with the magnet’ gives one of
the diagrams in —I. If x is the other distinguished vertex, the one corresponding to
the monomial P, then ‘pulling with the magnet’ gives one of the diagrams in —C'.

O

7.3 Translating BRST to Feynman diagrams

Let us repeat the considerations of the previous section in the slightly more compli-
cated case of the BRST invariance proof of section 7.1. Consider

expansion of

def Diagrammatic iLtot
F= /Dg@ (Q[’free)untouched OAe'™io ’

def Diagrammatic Lot
= /D(p (Q‘Ciﬂt)untouched OAe™tet,

expansion of

and
def Diagrammatic iLyot
¢ = /Dgp (QA)untouched OAeto )

expansion of

where the subscript “untouched” means that when calculating Q)L and QL;n; no
known identities are to be used to simplify the resulting expressions — they should
just be left as they are.

We will see that:

1. C is equal to the variation with respect to the metric of W.
2. F+1=0.
3. F=-1-0C.

These assertions clearly imply %W = 0, which is what we’ve been aiming to prove.
Each of F', I, and C' is a collection of diagrams made using the usual propagators
and the usual X2A, A3, and ¢Ac vertices, only that each of those diagrams has an
additional distinguished vertex of a form determined by the terms in (QZLgree) \ntouched:
(QLint) yntouched: a0d QA. In addition, the diagrams in F' and I will have a second
distinguished vertex, corresponding to A. For example, as QA has in it a term:

2

= /MS\/§5gijtr(8ié)8jc, (7.12)
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some of the diagrams in C' will have in them a single distinguished vertex of the form

Lp—ixj—%b
X 59 Z /ng/ﬁég”tab (016 (y.2)) (9 G (2. w))

The other diagrams in C' will have a distinguished vertex of either of the following

forms:
A/

Proof of 1. Using

0(D')=-D'(6D)D"! (7.13)
which holds for every linear operator D, one can see that
i E—— = —
s 59
i ________ = e - — = _., _________
o9 | 59
|
5 |
|

and then for example

S _
59 B
59

These are exactly the diagrams in C! (And it turns out that the combinatorics works
out right as well).

Proof of 2. Just remove the subscripts “untouched” and reread the proof of lemma
1.

Proof of 3. Just as in the previous section, the diagrams in F' will all have a
distinguished vertex of one of the following four kinds, corresponding to the four
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terms in (7.7) and (7.9):

in each of those vertices, the slot marked by # has a differential operator acting on
it. When a propagator is connected to one of those slots, the relations defining the
propagator can be used to replace the propagator and the slot to which it is connected
by a d-function, effectively calculating the variation under () of the vertex on the other
end of that propagator.

There are now few possibilities as for where does that other end land.

1. The slot # on a (& vertex might be connected by a propagator to another

slot on the same vertex (G . Here are the two such possibilities:

(/ \:#
A/E'Z\ - &3

When # is replaced by a d-function as explained above, the resulting vertices

These two vertices are identical but with opposite signs, and therefore they
cancel. This is exactly the fact proven in lemma 3 — that div @) = 0.

2. The distinguished vertex marked by a = might be connected through the

slot # to an X2A vertex. After the connecting propagator is replaced by a
d-function as usual, we get exactly the diagrams in QO. These were shown to
add up to zero in the proof of lemma 7.1.4.

3. The distinguished vertex = might be connected through the slot # to an
internal vertex of the diagram, of type A% or €Ac. In this case the propagator
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connecting the two vertices is replaced by a d-function, the resulting diagram
will have a distinguished vertex which appears in — (QLin) and so we
get just the diagrams in —1.

untouched’

. The distinguished vertex = might be connected through the slot # to the
other distinguished vertex - the one corresponding to A. In this case the prop-
agator connecting the two vertices is replaced by a J-function, the resulting
diagram will have a single distinguished vertex, of the form —QA. These are
exactly the diagrams in —C'.
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Chapter 8

The isotopy invariance argument

In this chapter we will prove (algebraicly, without the necessary analysis which is not
vet done) that the perturbative coefficients W,,(X) are invariants of knots embedded
in a flat R®. Of course, if W,,(X) is a topological invariant (does not depend on the
metric ¢), then it has to be invariant under isotopies of the knot X, and so what we
are set to show is actually a corrollary of the result of the previous chapter. However,
the proof below differs in some ways from the proof in chapter 7, and this makes
presenting this alternative proof worthwhile. The main advantage of the proof in
this chapter is that it ‘lives’ entirely in flat space, and therefore it seems that it will
be easier to supplement it with the necessary convergence analysis. Also, this proof
is much more explicit, and makes the mechanism by which the variations of some
diagrams cancel the variations of others much clearer.

8.1 Feynman rules in flat space

The Feynman rules in flat space are, of course, specializations of the rules given
in chapter 2. However, in flat space' these rules can be generalized slightly. Tt
turns out that the only way perturbation theory (in this case) depends on the Lie-
algebra is through the numerical weights that are assigned to each diagram D by the
contraction of all the Lie-algebra indices in £(D), and that the invariance proof below
works even if these numerical weights are replaced by arbitrary weights, so long as
these weights satisfy certain relations that will be described below. Other solutions
of these relations (that do not necessarily come from a Lie-algebra) might exist, and
such solutions might correspond to new link invariants.
We therefore redefine W,,,(X) to be given by

> %/5@), (8.1)

D’s of order m

where S(D) is defined just as in chapter 2, £(D) is defined as in chapter 2 only
without including the Lie-algebra indices a, b, ..., and the C(D)’s are arbitrary

1Or actually, in arbitrary space but relative to the trivial background connection.
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weights that ‘blind’ to the difference between gauge and ghost propagators and the
difference between A? and ¢Ac vertices? and satisfy the following relations:

The “ITHX?” relation: Let the diagrams I, H, and X be identical outside a small
domain, inside of which they look as in figure 8.1. Then their weights are expected
to satisfy

C(I) = C(H) - C(X). (8.2)
-—-- | | N 7 S o P \ / N 7
| | | \\ // \I/ \ / \\ //
| | | /v\ | \\ II /x\
o IV 7N /N /7N
| H X S T U

Figure 8.1. The diagrams I, H, and X, and the diagrams S, T', and U.

The “STU” relation: Let the diagrams S, T, and U be identical outside a small
domain, inside of which they look as in figure 8.1. Then their weights are expected
to satisfy
C(S)=C(T)-C(U). (8.3)

Remark Actually, a little more care is necessary. The vertex A? as it was defined in
(2.2) is symmetric with respect to the three propagators emanating from it, being a
product of two anti-symmetric terms. In the A? vertex that we use in this chapter the
tensor ¢4 is removed, and so our A? vertex is anti-symmetric. Therefore, if we want
to have unambiguous meaning to the Feynman rules, we must choose an orientation
to each of the A® vertices in D — for each A? vertex, choose one of the two possible
cyclic orderings of the three propagators meeting in that vertex. We assume that
C(D) = —C(D') if D' differs from D only in the orientation of a single vertex, and
we use the convention that in a planar projection of a diagram each of the vertices is
oriented counterclockwise (09).

With our simplifying assumptions, some of the rules of chapter 2 become a bit
simpler:
N
,/’k 2m Jm3

I 1
4 R - d l ]
> — o S Zaza (8 5)

j ie*(z —y)*
V() = ——L
T Yy J(xy) 2‘.%—@/‘3

dx €% (8.4)

i

, (8.6)

and
1

— G(z,y) = pTr— (8.7)

2Namely, if in a diagram D a loop of ghost (———————) propagators connected by ¢Ac vertices is
replaced by a loop of gauge (— — — — ) propagators connected by A? vertices, then C(DPefore) =
C( Dafter)_
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8.2 The variation of a diagram and the spider’s
journey

The m’th term W, in the perturbative expansion of W(X, k) is given by a weighted
sum of integrals of certain algebraic expressions which are most neatly represented
by Feynman diagrams as in (8.1), (8.4)-(8.7). Our aim in the rest of this chapter is
to prove® that under X = X +0X = X + w,

Wi Z 5/5

To do that, we have to calculate § [£(D) for an arbitrary diagram D.

Let us first describe the ‘main part’ of the computation, disregarding various
boundary and contact terms which will be the subject of the next section. Checking
formulae (2.1) and (2.4) we see that the ‘Vj;(x,y)’ connected to each X?A vertex in
D can be regarded as 1-form (with respect to either the variable z or the variable y),
and that the X2A vertex together with the s integration can be interpreted as the
integral of that 1-form along the 1-cycle represented by a segment of the knot X. It is
therefore clear that when the knot X is deformed, the variation of our integral [£(D)
(whose only X dependence is in the X?A vertices) is given® by the evaluation of the
exterior derivative of V on the infinitesimal surface S spanned by the deformation
of X. This statement is reproduced in diagrams in figure 8.2. In that figure, a new

boundary
terms

Figure 8.2. The six diagrams arising from the computation of § [ £(D) for D
with 3 type X2 A vertices.

vertex is introduced, corresponding to the evaluation of d“V on S:

(8.8)

S<—---y — =Xk (@V}i(l’ay) - @Vki(x’y)>

z=X(s)

We see that in calculating § [€(D) we find expressions that involve d“V. Whenever
such a term is encountered, we will use ‘the key relation’ of chapter 3.1 to replace it

3 Formally prove. Namely, present the algebra and combinatorics without considering the much
harder analysis problems.

4Well, just almost given. There is a boundary correction which will be discussed in the next
section.
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by the right hand side of that relation. Recall that the key relation states that there
exists a (2,0)-form F on R? for which

(d*V)igal(w,y) = (ATF) gk (2, y) + 2mied(z —y). (8.9)
In diagrams, the relation (8.9) is reexpressed as

('i'___—: ..... >d—|—. (810)

The last relation that we will use repeatedly is a combination of integration by
parts and Leibnitz’ rule described by the following diagram:

y/k d / /

/ / /

|

L N . (8.11)

The corresponding formula is:

I

0

owm

dw €™"P ( Fij (=, U))> Vor(w, ) Var(w, 2)

21 JR3

o 0
dw Gmonij’,(l“, UI) <an(w; Z)aw—m%k(w’ y) + Vzﬂk (w: y)aw—mvnl(w’ Z)>

21 JR3

— 4L dw €™ Fy; - (a, w) (Vau(w, 2)(d"V ) pm e (w,4) = Vi (w0, ) (d"V )na (w, 2)) -

T JR?

Summarizing, we first compute 0 [£(D) as in figure 8.2, and then alternate replac-
ing d*V by d®F as in (8.10) and integrating by parts as in (8.11). We can visualize
this procedure by imagining a spider walking on our diagram on gauge (— — — —)
propagators, beginning from some X?A vertex, changing every gauge (— — — —)
propagator that he had followed to a dotted (----- > ) propagator as in (8.10), and
deciding whether to turn left or right whenever he reaches an A? vertex as in (8.11).
The variation 6 [£(D) is then given by a sum over all possible ‘spider walks’ on D
of various boundary and contact terms that we have so far ignored and over all the
‘deadends’ — spider walks that cannot be continued further because the spider ar-
rived at an X2A vertex or a ¢Ac vertex, or has stepped on his own footsteps. We will
consider all these boundary terms, contact terms, and deadends in the next section.

8.3 Boundary terms, contact terms, and deadends

8.3.1 The beginning of the journey

There are two types of diagrams produced in the evaluation of §[€ (D) even before
the spider begins his journey. The first of them is the boundary term in figure 8.2 —
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if the 1-form V;(-, y) was evaluated on a closed cycle, there would have been no need
for a correction in figure 8.2. But actually, it is evaluated on a cycle whose ends are
given by two other X2A vertices in D, and more care need to be taken near the ends.
Stokes’ theorem says that the integral of V;(-,y) around the complete boundary of
the part of S lying between these two X2A vertices is given by (8.8). This boundary
is made of four pieces — two long and almost parallel pieces that follow X and whose
difference is exactly what we are trying to compute, and two infinitesimal pieces near
the ends (see figure 8.3). The contributions to (8.8) from the two latter pieces needs
to be subtracted off, and this is done by the following ‘R1’ vertices:

The context: The vertex R1: The formula for R1:
i ,// ,—i— y
D= A s<’ (kal - Xlwk) Vi (X, y)Vii (X, 2)
\\\\\ AN \\\ J
<~z

The above rectangle is the form in which all the contributions to dW,, will be
described. The left most column is the ‘context column’ that describes the context in
which the presently discussed term appears — our term appears whenever there are
two neighboring X2A vertices in a diagram D, and we are considering one of them as
the boundary of the other’s domain of integration. The slash (/) on the knot segment
connecting these two vertices indicates that the present contribution comes when the
length of this segment wvanishes. The center column is a diagram part that serves
as the symbol of the currently discussed contribution to §[€(D). To get the precise
formula for this contribution, replace the symbol R1 by the formula in the right most
column, and proceed to evaluate the other parts of D as in section 8.1.

The second contribution to § € (D) that arises even before the beginning of the
spider’s journey is the contact term arising from the §-function in (8.10), when this
formula is first applied:

The context: The vertex R2: The formula for R2:
// ) :
“ B s<: ; eklmem"”kaanj(X, 2)V,i (X, y)
\ S
<~z

8.3.2 The journey

During the journey itself, in which the operations (8.11) and (8.10) are alternated,
there is only one kind of ‘left over’ contribution — the contact term arising from the
d-function in (8.10):
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Figure 8.3. The boundary term R1: In these diagrams, the solid ellipses rep-
resent the knot X and the dashed ellipses represent the deformed knot X + w.
The first two diagrams represent the part of the contribution to 0 [€(D) coming
from varying the position of one of the X2 A vertices in D. This X2 A vertex is
integrated over a range (marked by a double arrow <) bounded by two neigh-
boring X2 A vertices. By Stokes’ theorem, the quantity that we are interested
in, the difference of the first two diagrams, is given by an integral of d“V on the
variation surface S (represented by the third diagram), plus the evaluation of V'
on the two short segments connecting the solid and the dashed ellipses near the
bounding X2 A vertices. This last contribution is given by the term R1.
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The context: The vertex R3: The formula for R3:
ﬂ / "A\T/" __Z du €™ TStF' )
e i 20 o P (0
// \ ///\\\ X\& |//Z
\\/l/,l -an(y,u)Vms(w,u)Vlt(z,u)
A 4 4 \\ .
R Y.k maw _ ! nst g
— \/z:, =5 Js du € Fy; _(z,u)
' A 'an(yau)vms(wau)Wt(zau)

An example for a term of this sort will be the term

-1 , e
— [ ds;_sdydzw'(s)) X{ X" X§ X X?

871'2 cyclicly ordered si_s5
n 8.12
'Fij,*(Xla y)e klvmn(X2; y)sz,f(y, 2) ( )

'eqrtvuq(XZi: 'Z)‘/sr (X4; Z)V},t(Xg,, Z)

that arises in the variation of the diagrams

and

Notice that in the translation process in (8.12) we used the following two rules to
) propagators and the F?A vertex connecting two dotted

deal with dotted (----- S
and one gauge propagator, in addition to the standard rules of section 8.1:

1.
: k
T, Yo F,. G )N 8.13
i S J, (:r,y) ( 63k2\x—y|3 ( )
2.
;>V3\I’"Z — ﬁ RS dw elmnFij,f(x:w)‘/;cl(y:w)an,f(w:z) (814)
y-k

8.3.3 The spider returns to the link
Right before the spider arrives at the link back again we get the following contact

contribution, as usual from the -function in (8.10):
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The context: The vertex R4: The formula for R4:

\\ y\l(\\ _lelmnem’ﬂpoFl7(27X)‘/;€l(y,X)
?_7/_ \" S 2 Js

y . .
g =-X'"F; (2, X)Viu(y, X)

When the spider arrives at the link, we get the following ‘dead end’ contribution:

J

d p O
y>>s — —Xk @Fi]’,—(yaz) (815)

z=X

Notice that here we are taking the line integral of a gradient (%Fij,_(y, z)) along a

segment of the knot X. Thus by the fundamental theorem of calculus (8.15) can be
written as the difference of the values of Fj; _(y, X(s)) at the two end points of the
line of integration. Such an endpoint might be a regular X?A vertex, in which case

we get the term:

The context: The vertex Rb: The formula for Rb5:

~~o_ N y\l(
> B .4'\';} -7“>S X'Fyj (2, X)Vialy. X)
- . zZ-:

ij

Or else, such an end point might be the special X2A4 vertex from which our spider
began its journey. The term corresponding to this later possibility is:

The context: The vertex R6: The formula for R6:

.-~~V~. .“‘\ . y‘~~~
>/ C 4‘9‘:}/ >5 Fij— (2. X)W X' Fy (X, y)
___7‘ '.' Z-"7

8.3.4 The spider meets a ghost

As usual, we first have a contact contribution from right before the spider-ghost
meeting:
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The context: The vertex RT: The formula for R7:

—1 Imn D
ym Rgdue €mnp(OLG (u, w)) G (u, 2)

3 i
‘;_/< X V\-.<Z Fij— (@, u)Via(y, u)
/ U ~1

Yk W = 5 Jes du G (u, 2)Fyj (2, u)

Viuly, w)9,G (u, w)

Then we also get a ‘dead end’ contribution

1 9
X d R Nl k
N T /RS dw G (y, w) (awkmj,(x,w)> 9 G(w, 2), (8.16)

which can be expanded further by integrating w by parts and using Leibnitz’ rules
similarly to what was done in (8.11). There are two resulting terms. The first one is
when Leibnitz’ rule instructs us to turn left in (8.16). In this case there isn’t really
much that we can do, so we just leave the resulting term as it is:

The context: The vertex RS: The formula for RS:
y L[ awE VG
>< >3< 5 s @0 P (@) (G Gy, )
1)
z OFG(w, 2)

The second possibility is that Leibnitz’ rule instructs us to turn right in (8.16).
In this case we get

T JR3

y
-1 w
)ij>\A< — 5 dw Fy;_(2,u)G(w,y)0p 0% G(w, 2)

- /Rs dw Fy; _ (2, u)G(w, y)d(w — 2).

Integrating w and bringing into sight the ¢Ac vertex at the z side of the w-z propa-
gator, we get the following contribution to §[€(D):
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The context:

The vertex R9:

The formula for R9:

1 dw G(u, 2)Fij_(x,u)Vi(y, u)

21 JR3

0L G (u, w)

8.3.5 The spider meets his own footsteps

The contact contribution from right before the meeting is:

The context:

The vertex R10:

i Im
N
Uyl
y /”*. w
/k S

The formula for R10:

—1
du " €5, € Fyy (u, w)

81 Jro
'Em,— (ya U)F}j’_(fﬁ, w)an(y, U)
= | du €™ F,, _(u, w)

'lem,f (ya u)ﬂj’,(iﬁ, w)an(ya U)

In the above diagram, the ‘footsteps’ are assumed to be the dotted (----- S>eenee )
propagators connecting = to v and u to w, and the spider comes back to the area
from the direction of z. This explains the ‘twist’ in the context column.

There is also the ‘dead end’ contribution, which we simply leave as it is:

The context:

The vertex R11:

The formula for R11:

—1 mn
yr dw Fj_(z, w)e™PF,, _(w, 2)

'a;,Ulel,f(y: w)

8.3.6 The journey ends before it really started

The spider’s journey might end before it really gets going if he has a too short chain

of gauge (— — — — ) propagators to travel on — namely, if that chain is of length
1 — namely, if the spider starts on an X2A vertex that is connected via a gauge
(— — — —) propagator to anything but an A® vertex. The three possibilities are:
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The context: The vertex R12: | The formula for R12:

y
<""< K Gy, X K OG0, ),

z

The context: The vertex S The formula for S:
6<___/___> 1<___/___>2 EZ]kle{Xg(S(Xl_XQ)
and
The context: The vertex T The formula for T

T .
6 -7/~ m CijkaX]Xké(X - X)

Notice that the last two contributions differ only by the separation between the
two ends of the gauge propagator being treated. In 7T these two ends are assumed to
be adjacent, while in S they are assumed to be separated by some other X?A vertices.

8.4 cancellations

In the previous section we computed dW,, and found that it is given by a sum of
14 types of contributions: R1-R12, S, and T'. In this section we will see that these
contributions all cancel each other, and therefore 6W,, = 0. Let Rn denote the
total contribution to dW,, that comes from diagrams of type Rn, S denote the total
contribution of type S, and 7 denote the total contribution of type 7.

Proposition 8.4.1
R1+R2=0. (8.17)

Proof The identity
€xime " = 6L 07 — OFo) (8.18)

shows that vertices of type R2 are, in fact, precisely the negatives of to vertices of
type R1, while the context columns in the definitions of these two vertices shows that
R1 comes with weight C(T') —C(U), and that R2 comes with weight C'(S). The STU
identity (8.3) concludes the proof.

(Il

Proposition 8.4.2

R3=0
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Proof Diagrams of type R3 come with weights C'(I), —C'(H), or C(X), as can be
read from the context column in the definition of R3. The I HX identity (8.2) shows
that these weights cancel each other.

(Il
Proposition 8.4.3
R4+R5=0
Proof Similarly to (8.17) this identity follows from the STU identity (8.3).
O
The proofs of the following three propositions rely on the observation that a chain
of dotted (----- S ) propagators connected by F?A vertices is essentially equivalent
to a chain of ghost (—————) propagators connected by ¢Ac vertices:
X>y1 >y2 = = yp> X yl J2 %,%yp
L g i ] W :i Il T W
2 I ol | 1 :
Z1'ky 22'kp Zp'kp Z1'ky 22'kp Zp'kp
(8.19)

This identity is an immediate consequence of the definition of the ghost propagator
(8.7), the definition of the dotted propagator (8.13), the definitions of the F?A and
cAc vertices ((8.14) and (8.5)), and the identity

él"pénpq = 2(52.
Proposition 8.4.4
R8+R11 = 0.

Proof Immediate from the dotted-ghost relation (8.19), the definition of the R8 and
R11 vertices, and the fact that the diagrams of type R8 have one more ghost loop
than their counterparts of type R11 and therefore they get opposite signs from (2.5).

|

Proposition 8.4.5
R6+ R12 = 0.

Proof Immediate from (8.19), (8.18), (2.5), and the STU relation (8.3).

Proposition 8.4.6
R7T+RI+R10=0.

Proof Immediate from the dotted-ghost relation (8.19), from (2.5), and from the
THX relation (8.2).
O
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Proposition 8.4.7
S=0.

Proof We just have to remember that the points 1 and 2 in the definition of the
term S are always distinct, and therefore 6(X; — X5) = 0.

O
Remark This proof is actually more interesting when it breaks down — when the
knot X is deformed in such a way that a self-intersection is created. In this case the
points 1 and 2 are not necessarily distinct, 6(X; — X3) can be non-zero, and when
it is non-zero we get a skein-like relation similar to Vassiliev’s relation (9.23). It is
exactly this term S that assures that W,,(X) is a non-trivial knot invariant!

Proposition 8.4.8 If one is willing to be a bit naive,
T =0.
Proof The formula for the term 7T is
det (X‘w ‘X) (X — X).

If one is willing to be a bit naive, then the determinant in the first part of this formula,
det(X |w|X), vanishes because it has two equal columns and this cancels the infinity
of (X — X).
(I
Remark Actually, proposition 8.4.8 is blatantly false. 0 - oo = 0 doesn’t make much
mathematical sense as it stands, particularly when the oo is such a ‘large’ co — it
is a three dimensional )-function integrated on just a line! So clearly, more care
needs to be taken when considering the vertex T'. This is essentially what is done
in section 3.3, where it is shown that the failure of proposition 8.4.8 is proportional
to the total torsion 7 of X. I believe that the same “correction” procedure that was
used there — subtraction of a certain multiple of 7 — can be used in the higher loop
case introducing a framing dependence to W,,. This is yet to be proven.
Either way, whether by choosing to be naive or by believing that the failure of
proposition 8.4.8 can be corrected as in section 3.4, propositions 8.4.1-8.4.8 prove that

Wn(X)=R1+...+4RI12+S+T =0,

and therefore W,,(X) should be a knot invariant.
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Chapter 9

The Lie-algebraic weights of
Feynman diagrams

9.1 Introduction

The purpose of this chapter is to introduce a certain combinatorial-algebraic problem,
discuss its significance to knot theory (and to a lesser extent, to quantum field theory),
and present some solutions of it. The most general solution to this problem has not
yet been found, and finding it is likely to lead to the discovery of new knot and link
invariants.

In this chapter, the words closed diagram will always refer to a graph made of
a certain number of directed ellipses (called Wilson loops) marked by the natural
numbers 1,..., 7, and a certain number of dashed lines (called propagators). The
propagators and the Wilson loops are allowed to meet in two types of vertices — one
type (called type R*G) in which a propagator ends on one of the Wilson loops, and
another (called type G*) connecting three propagators. We assume that the second
kind of vertices are oriented — that one of the two possible cyclic orderings of the
three propagators meeting in such a vertex is specified. The order of such a diagrams
will be half the total number of vertices in it.

Figure 9.1. An example for a closed diagram of order 6.

Figure 9.1 is an example for such a diagram with / = 2. In this figure (as in
the rest of this chapter) each of the vertices is oriented counterclockwise (¢9). This
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convention means that the two diagram parts in figure 9.2 are not equivalent. Also,
remember that our diagrams are not allowed to have higher than cubic vertices. It is
therefore implicitly understood that when four or more lines meet at the same point,
that point is not a vertex and those lines pass each other without “interaction”.

Figure 9.2. Two diagram parts which differ only by the orientation of one of
their vertices.

We will be looking for assignments D — C'(D) that assign a weight C'(D) inside
some pre-chosen Abelian group to each diagram D, and satisfy the following two
relations:

The “ITHX?” relation: Let the diagrams I, H, and X be identical outside a small
domain, inside of which they look as in figure 9.3. Then their weights are expected
to satisfy

Figure 9.3. The diagrams I, H, and X.

The “STU” relation: Let the diagrams S, T, and U be identical outside a small
domain, inside of which they look as in figure 9.4. Then their weights are expected

to satisf
! C(S)=C(T)-C(U).

Main problem Find all such assignments C.

Such assignments will be called weight systems.

There are very good reasons to believe that each weight system will give rise
to a link invariant. When one considers the perturbative expansion of the Chern-
Simons quantum field theory as described here, one encounters diagrams much like
the above. The diagrams in the Chern-Simons theory correspond to integrals, and I
have shown in chapter 8 that (assuming some convergence which is yet to be proven)
these integrals summed with ‘correct’” weights add up to give link invariants. The
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~- \ / N /
| \ / N s
| \ / N
| \ / /N
| \ / /N
S T U

Figure 9.4. The diagrams S, T', and U.

word ‘correct’ in the previous sentence means exactly “satisfying the relations IHX
and STU”. In chapter 4 1T have carried out this program for the diagrams of order
< 2, and in [42, 43] Witten has shown that the HOMFLY polynomial [23] can be
derived from the Chern-Simons quantum field theory, and therefore can probably be
re-derived using our techniques. The weight system C that should correspond to
the HOMFLY polynomial is presented in section 9.5. I don’t know which are the
knot invariants corresponding to most of the other weight systems presented in this
chapter, and I do not know whether there are further weight systems beyond those
presented here.

As was (implicitly) shown in [42] and discussed in this thesis from the perturbative
point of view, to each weight system should correspond a three-manifold invariant as
well.

In section 9.6 a second relation, due to Vassiliev [41] and Birman-Lin [10], between
those weight systems and knot theory is discussed.

9.2 The method

Let F be a field, and let D be a closed diagram. I will now show how, given some
Lie algebraic data, we can associate an element Cg(D) of F to D. Of course, the
construction below is precisely the ‘Lie-algebraic’ part of the construction in chapter 2.

Let G be a finite dimensional Lie algebra over the field F, Ry,..., Ry a list of
finite dimensional representations of G (one for each Wilson loop in D) of dimensions
dy,...,dr, and let & be a non-degenerate F-valued ad-invariant bilinear form on G® @,
where ad denotes the adjoint representation of the Lie algebra G on its underlying
vector space. Let {G,} be a basis for G, {r{*} a basis of R;, and define the tensors t,
e, £S tape, and Rf,5 by the following formulae:

tay = ft(ga,gb),

tabtbc = 6116;
[ga: gb} = acb Ge,
tabc = gbtdCa

Ri(G.)re = Ryl

To define Cg(D), first mark every Wilson loop segment in D by a greek letter
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a, 3,..., and every end of every propagator by a small letter in the English alphabet
—a, b, ...

Figure 9.5. An unmarked diagram and a marked diagram.
I will now describe how to construct a certain algebraic expression out of D and
its marking:

1. To each type G? vertex in D associate a t... symbol with the - - - replaced by the
letters marking that vertex, picking those letter in an order consistent with the
orientation of the vertex. Using the invariance of ¢, it is easy to check that
tabe = tpea = teap, and so the particular order chosen is immaterial.

2. To each propagator in D associate a ¢ symbol with the dots replaced by the
letters marked at the ends of that propagator.

3. To each type R%G vertex associate an R, symbol with the dots replaced by the
letters marking that vertex, as in the figure below:

\a —>Ra’y

4. Take the product of all the above mentioned ¢..., t*, and R symbols.
5. Sum over o, 3,..., and a, b, ..., and call the result Cg(D).

For example, if D is the diagram in figure 9.5, then (summation understood)
Co(D) = tuyot ™/ RY, R}, RS, (0.1

Well-definedness We will now check that Cg(D) is independent of the choices
of bases that were made. Clearly, Cg(D) is independent of the choice of {r®} — as
is demonstrated in (9.1) the representation R appears only through matrix traces of
the form

tr R(Ga)R(Gy) R(G.).

Suppose that {G,} is a different basis of G. One can define I, #,5., and Rg; with
respect to this new basis, and use these tensors to define Cg(D). We will show now
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that Cg(D) = Cg(D). The two bases are related by some linear transformation —
that is to say, there exists a matrix { M2} for which

g(_l — Mgga

One can check rather easily that the new tensors are given by the old ones through
the following formulae:

fdﬁ MgMBbtab

o (M=")a(M")pee?
Edl;é - MgM[_)ngtabc
Rgs = MgRgg

where (M~')% is the inverse matrix of Mg. It is now easy to see that when these
expressions for 1%, #,5., and R2s are combined together to form Cg(D), every matrix

(M~1)2 cancels every M?.

9.3 Relations between the Cg(D)’s

9.3.1 Tensors and relations between them

So far, we used the fact that the tensors that went into the construction of Cg(D)
came from a Lie algebra and satisfied certain relations only in a very mild way — in
checking that t.,p. = tpea = teap- We will now see what relations among the Cg(D)’s
can be deduced from the relations that t®, ¢,., and Rg‘ﬁ are known to satisfy.

First, a slight generalization. Using more or less the same procedure as before we
can assign to every non-closed diagram D, which is allowed to have propagators with
“free” ends and non-closed Wilson lines, a tensor

J
T=TD)ed" @ (R®R). (9.2)
i=1
Here n is the number of propagators with free ends, Ry, ... R; are the representations
corresponding to the non-closed Wilson lines, and the R;’s are their duals. It is clear
how to define 7 — one just needs to follow the same steps as in the definition of
Cg, and as D is not closed some of the indices will appear only once in the resulting
expression and instead of being summed over these indices will serve as the indices
of the tensor 7. For example:

a~~ab_-p
c’*/
|

s b 4 ! ! —
R — TV = bz Pt o R € G @ R® R
G/_A\B a'\b e
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Claim 1 The two diagrams in figure 9.2 correspond to tensors which are the negatives
of each other.

Proof The is simply the fact that the Lie bracket is anti-symmetric.
O

Claim 2 Let the diagrams S, T, and U be as in figure 9.4. Then the tensors corre-
sponding to them satisfy:

TS)=T(T)-T(U) (9.3)

Proof This is simply the fact that R is a representation. That is, that R([G,, Gs]) =

R(Ga) R(Gp) — R(Gp) B(Ga)-
|

Claim 3 Let the diagrams I, H, and X be as in figure 9.3. Then the tensors corre-
sponding to them satisfy:

T()=T(H)—-T(X) (9.4)

Proof Translating I, H, and X into their corresponding tensors, it is easy to see that
this is simply the Jacobi identity! (In fact, this claim can be regarded as a particular
case of the previous one, asserting that the adjoint action of a Lie-algebra on itself is
a representation).

O

9.3.2 Sewing

Given two open diagrams A and B and a (partial) correspondence ¢ between their
open ended lines which sends a propagator to a propagator and an ingoing (outgoing)
Wilson line to an outgoing (ingoing) Wilson line labeled by the same representation,
one can define their join A#B to be the diagram obtained by sewing the external
lines of A with those of B according to the correspondence . It is also possible
to sew T(A) to T(B) by contracting their indices as dictated by ¢, (using t,, to
lower the propagator indices). It is clear that the resulting 7 (A)#7 (B) will equal
T (A#B). In particular, if A#B is a closed diagram, then Cg(A#B) = T (A)#T (B).
(See figure 9.6).

Figure 9.6. Sewing two diagrams.
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Thus (9.4) and (9.3) can be used to derive relations between closed diagrams —
(9.4) says that if three diagrams I, H and X are identical outside of a small domain

in which they look like the diagrams I, H, and X of figure 9.3, then they satisfy

Co(D) = Cg() - Cg(X). (9.5)

Similarly, (9.3) implies

Cg(8) = Cy(T) — Co(D). (9.6)

The last two relations show that D — Cg(D) is a weight system in the sense of

section 9.1.

Lemma 9.3.1 For any open diagram D, T = T (D) is an invariant tensor (with

respect to the natural action of G on each of the components in (9.2)).

Proof The reason why this lemma is true, is that 7 can be seen as the contraction
of a collection of invariant tensors — the ¢..., the ¢ and the R are all invariant. This
statement can be translated into a combinatorial invariance proof. T will just sketch

this proof here, and supplement this sketch with a simple example — figure 9.7.

R [ |,

Figure 9.7. A simple invariance proof — the tensor D is the sum of 1-12.
Relation THX shows that 1 +2+3 =10+ 11+ 12 = 0, relation STU shows
that4+54+6 =7+8+9 =0, claim 1 shows that 1+12 =24+6 = 7+11 = 0,
and 4 + 9 = 0 by the choice of signs. It follows that 3+ 5+ 8 + 10 = 0. This
is exactly the fact that 7 is an invariant tensor.
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For simplicity, I will disregard + signs here. Say D has n internal vertices. Pick a
point P outside of D and consider the 3n diagrams obtained by connecting P using
a propagator to each of the three lines emanating from each of the n vertices in D.
Let D be the sum of the tensors corresponding to these 3n diagrams. Each internal
line in D has two terms corresponding to it in D coming from the two vertices at the
ends of that line, and with the proper choice of signs these two terms exactly cancel.
The only diagrams that still contribute to D are those in which P is connected to an
external line, and, if P is marked by a, these are exactly the diagrams that represent
the variation of D with respect to G,.

On the other hand, the relations (9.4) and (9.3) show that each group of three
diagrams made by connecting P to the three lines emanating from a single propagator
corresponds to tensors that add up to 0. D is just a sum of such groups, and this
concludes the proof. (See figure 9.7).

O
Remark The behavior of D — T (D) under sewing means that we’ve actually defined
a topological Quantum Field Theory of dimension 1, satisfying Segal’s axioms (see
[4, 46]). Lemma 9.3.1 shows that the vector space assigned by our QFT to n + 2.J
points, n of which labeled ‘G’, J labeled R;,... Ry, and J labeled R;,... Ry, is the

space of invariant tensors in
J —
G¥" ® ® (Rz’ ® RZ’) .
i=1

Every diagram D with n+2.J free ends (of the appropriate kinds) gives a vector T (D)
in that vector space.

Lemma 9.3.2 If the representation R is irreducible, the factorization property illus-
trated in figure 9.8 holds. (In that figure, the blobs

arbitrary subdiagrams with an arbitrary number of connections to the Wilson loop).

and simply represent

Figure 9.8. The factorization property.

Proof Clearly, the two sides of the equation in figure 9.8 represent two ways of
contracting the tensors A% and B? corresponding to the two open diagrams obtained
by removing the “bridge” in the left hand side of that equation. But from lemma

88



9.3.1 and the irreducibility of R it follows that A and B must be multiples of the
identity matrix:
a _ _sa B _ psB
A% =ad% ; B, =bd,.
This reduces figure 9.8 to the trivial assertion

dad®3bd”%, = ad®,bs’s.

(Il
and @ to be empty shows that it’s natural to

Remark taking the blobs
define Cg( O ) =dim R =d.

9.4 Evaluation of some diagrams for simple alge-
bras

In this section G will be a simple Lie algebra over the real or complex field, and R
will be an irreducible representation of G. In this context, it is possible to evaluate
some diagrams in a relatively simple way.

The key point is that under the above conditions, the spaces of invariant tensors
in G ® G and in R ® R are both one-dimensional, and therefore one can speak of
‘ratios’ of invariant tensors in G ® G or in R ® R.

Definition 1 The constants v and g are given by the following ratios':

(Notice that by lemma 9.5.1 the above tensors are all invariant).

In the following few lines, we see how the relations from the previous section can
be used to evaluate Cg for all closed diagrams with a single Wilson loop and orders
smaller than three. For brevity, we omit the symbol Cg below.

O =4 by the remark after lemma 9.3.2 (9.8)
&) r (O =dr by (9.7) and (9.8) (9.9)
9 =dgr by (9.7) and (9.9) (9.10)
=7 @ = dr? (9.11)
= ( © - ®)= 0 = —dgr by (9.3) (9.12)
= =dr (r — —g) (9.13)

1Using the notation of chapter 5, g = c2(G) and r = ca(R).
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Similarly:

1 1
= dgr - §dgr(r—§g)
1
g — - Lo
1
— d,',,3 = dg?“(?“——g)

I
U
3
N
—~
=
|
| =
<
SN—r
I
—_
L
)
N
<

Unfortunately, there are some order four (and higher) diagrams that cannot be
evaluated using these techniques. One such diagram is :

The following table contains the values of d, g, and r for some classical Lie algebras
with their defining representations (and t,, taken to be the matrix trace in those
representations):

g R d g r
N N? 1
sl(N,C) | C N 2N
N
N -1
so(N,C) | CN || N | N-2 5

sp(N,C) [ C*M | 2N | 2(N +1) | N+ =

Remark One can check that if G is a real Lie algebra and G is its complexification
then Cg = Cgc. Therefore the above table can be used to evaluate d, g, and r for any

of the real forms of si(N, C), so(N, C), or sp(N, C) in their defining representations.

90



9.5 Complete evaluation for the classical algebras

By the remark at the end of the previous section, to calculate Cg for the classical
algebras (in their defining representations) it is enough to consider the four complex
classical algebras.

The first step is to use relation STU repeatedly, with each usage reducing the
number of G* vertices by one, until we are left with a diagram D that has no G3
vertices. The basic building block of such diagrams is the tensor

& Y

This tensor will be evaluated explicitly for each of the complex classical algebras, and
the results will turn out to have representations in terms of diagrams that have no
propagators in them. Using this repeatedly, we are left with disjoint unions of circles
which again are easy to evaluate explicitly.

[ will show in detail the computations for so(N, C), and just state the results for
gl(N,C), sl(N,C), and sp(N, C).

9.5.1 The algebra so(N, C).

A convenient choice of generators for so(N, C) are the N x N matrices M;; (i < j),
given by

(Mij)as = 0iadjp — digdja-
That is, the ij entry of M;; is 41, the ji entry of M;; is —1, and all other entries
of M;; are zero. The invariant bilinear form that we pick on so(N, C) is the matrix
trace in the defining representation, and so

t("])(kl) d:ef tr(Miijl) = _252k6]l

Inverting the NU\;*I) X N(AQLI) matrix t;;) k) we get
£() (kD 52’“631 (9.14)
and so
Ty = > (D (My)as(Mij)ss. (9.15)
1<j;k<l

Using (9.14) and some algebraic manipulations we can simplify (9.15), and then rep-
resent it by a diagram:

QU(S o )
1 1

(9:15) = 5 (Bass, = dar3s) = 5 - . (9.16)



The last thing to note is that
Cso(N,C)(k disjoint circles) = N*.

Example For so(N,C) in its deﬁning representation we can calculate d, r, and ¢
using: (suppressing the C’ N.C) ’ symbols)

d = Q:N
= O=(E-2) M0
dr(r—%g) - :iogo_%ogoJr R — N(N;;_l)

9.5.2 The algebra gI(N,C).

Similar considerations lead to the even simpler rule
o 4 au )
(ig)
B v B g

Cgl(N,C)(k disjoint circles) = N*.

while retaining

Example For gl/(N,C) in its defining representation

©=0-0=0-%%=Nn-1

9.5.3 The algebra si(N,C).

The rule here is
a o au ) a )
(24) 1
(ki) m N ’
5 vy B gl B gl

Ca C)(k disjoint circles) = N*.

with the usual

Example For sl(N,C) in its defining representation we can calculate d, r, and ¢

using:
d = (O =N
dr = Oz@—%@
1y B ~ 1 1-N?
ar(r—59) = Jgo‘ﬁ@*WQ— N
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9.5.4 The algebra sp(N, C).

This is the most complicated case. Let D be a diagram with no G? vertices.
computation of C'_ C)(D) now proceeds in two steps:

The

1. Mark each Wilson loop segment in D with either the symbol P or the symbol
@, in such a way that the number of P’s entering each subdiagram of D of the
form }T is equal to the number of P’s leaving it. (Remember that the Wilson

loops are directed).

2. Simplify D using the following rules:

P P B Q B 1\/
h"ij_‘?&" RV

Q P P .

HIE] - 4X
ETR0X)
Q Ip p AV

3. Similarly to the usual,
Cv.C)(k disjoint marked circles) = N*.
(Notice that this time dim R = 2N # N).

Example For sp(N,C) in its defining representation we can calculate d, r, and g

using:
d = ©—+—
e W Ne e
_ (Q+%) vi )
2@ v 2

DN | —

€

D).
X
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Exercise The reader might find it amusing to verify that Csp(l C) = 051(2 C): 8
expected from the isomorphism sp(1, C) = sl(2, C). Notice that 050(3 o) is not equal
to Csp(l,C) (or Csl(Q,C)) because their defining representations are not the same.

9.6 Appendix: The Vassiliev knot invariants

9.6.1 Taking the logarithm

In this appendix we will assume that F is a field of characteristic zero and that R is
an irreducible representation of G.

Definition 2 Let A be the vector space of (infinite) formal linear combinations (with
coefficients in ¥ ) of (graph-) isomorphism types of closed diagrams having I = 1, (i.e.
containing exactly one Wilson loop), with a pre-chosen base point on that loop. For
convenience, we will exclude the trivial diagram Q from A. For example, here are
the siz simplest generators of A:

In fact, A can be made into an algebra; the product of A € A and B € A will
essentially be the sum of all the possible ways of merging them into a single diagram:

Definition 3 Let A be a generator of A, and let ay,as, ..., a, be the list of R*G
vertices in A, in the order they are encountered when one travels along the loop
consistently with its orientation and beginning from the base point. Let B be another
generator of A, and define by, by, . .., by in the same way. Let P be the set of all possible
linear orderings of n “a” symbols and m “b” symbols. For every P € P define [AB]p
to be the diagram obtained by marking a based Wilson loop with a’s and b’s following
their order in P, and connecting diagrams A and B (minus their respective loops) to
that Wilson loop following the marks in the obvious way. Finally, define

A-B=Y [AB],.

Pep

For an example, see figure 9.9.

Figure 9.9. Taking the product in A
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Claim 4 The algebra A is associative and commutative.

Now let Z € A be i
Z=d+ > Cg(D) - D, (9.17)
generators of A
and let W € A be the formal logarithm of Z,
W =log Z,
given by the formal power series expansion
W & logd + i D™ (8 Cg(D) - D) (9.18)

mdm

Notice that the order of A - B is always bigger than that of A or B, and so every

diagram D appears in the above infinite sum only finitely many times, and hence W
is well defined.

Definition 4 Define C;(D) to be the coefficient of D in W. Namely, define it by the
equation
W =logd+ > Cgy(D)
D

Remark It is easy to check that the weight of a diagram is independent of the
position of its base point, which was introduced only for the sake of simplifying
definition 3. Therefore, base points will be suppressed from now on.

Definition 5 Let D be a generator of A. A ‘cyclic partition’ of D will be a cyclicly
ordered (that is, ordered up to a rotation) partition ® = {D1, Ds, ..., Dyo)} of the
set of all propagators of D into disjoint subsets, such that for any propaga,torp € D;,
all the propagators connected to p by a G wvertex will also be in D;. Given such
a partition, we will denote by the same letter D; the generator of A obtained by
reinserting the Wilson loop of D around D;.

Claim 5 The weight Cj(D) of a generator D of A is given in the following formula:

(oo

= Y H Co(D (9.19)

cyclic partitions 2

Proof This is simply a sum over all the possible ways of writing D as a product in
A, with the coefficients taken correctly as in (9.18). The fact that we are restricting
our attention to “cyclic partitions” corresponds to the factor % in that equation.

O
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Lemma 9.6.1 Let D be a generator of A which can be decomposed (in the sense of
definition 5) into two parts such that:

1. The two parts can be separated from each other by cutting the Wilson loop of D
at just two points.

2. At least one of the parts cannot be decomposed any further.

In this case,
CL(D) = 0. (9.20)
(For an example, see figure 9.10).

Figure 9.10. An example for a diagram with C;(D) =0

Proof Let D = AUB be a diagram decomposed into two non-empty separated parts
such that A cannot be be decomposed any further. Write

, / ’ (_1)k(59)+1 k(D)
cyclic partitions i=1

We will prove (9.20) by finding a fixed point free involution ® — p® of the set of all
cyclic partitions of D for which ¢'(pD) is always the negative of ¢/(D).
Let ® = {Dy, Dy, ..., Dyo)} be a cyclic partition of D. There are two possibilities:

1. A is one of the D;’s. In this case, define p® to be the cyclic partition obtained
by adjoining A to the component of D preceding it in ®. It is clear that
k(pD) = k(D) — 1, and therefore using lemma 9.3.2 we find '(p®) = - (D).

2. A is properly contained in one of the D;’s. We may assume that A is properly
contained in Dy. Define p© = {Dy — A, A, Dy,..., Dyoy}. It is clear that
k(pD) = k(D) + 1, and therefore using lemma 9.3.2 we find ¢/ (p®) = —¢/ (D).

It is clear that p is a fixed point free involution.

O
Remark Tt is easy to show that the second requirement of the above lemma is
superfluous — even if one of the parts of D is still decomposable one can always use
relation STU to express that part as a sum of open diagrams, each of which is either
‘less decomposable’ or ‘more separable’ (i.e. can be separated in the sense of the first
requirement of the above lemma into two smaller parts).
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Claim 6 The relations (9.5) and (9.6) hold for the C;(D)’s as well:
Cy(1) = Cly() — CL(X), (9.21)
C4(3) = CL(T) - (D). (9.22)

Proof (9.5) is a linear relation, and it is respected by each term in the sum (9.19).
Therefore (9.21) holds. The same is true for (9.22), only that T and U have cyclic
partitions which do not correspond to cyclic partitions of S — these are the ones in
which the two propagators in T or in U of figure 9.4 appear in different components.
There is natural correspondence p between those exceptional partitions of T and those
of U, and clearly ¢'(pD) = /(D) for every exceptional partition ® of 7. The minus
sign in (9.22) then shows that these exceptional partitions can be disregarded.

O
Remark The algebra structure of A can be used to define an algebra structure on
the space C of all weight systems. Let the generating function Zs of a weight system
C be as in (9.17),

Zo=d+ > C(D)-D,

generators of A

and for (' 5 € C define their product C; - Cy by
201.02 = ch . ZCQ‘
The above proof is essentially a verification of the fact that Zg,.c, is indeed the

generating function of a weight system that satisfies the relations ITHX and STU.
Example The following weights can be easily computed using (9.19):

cL()) = r Co(@D) = Ly
Co(D) = gr () = 9
(D) = Zgr () = _%g%
D) = —gr (@) = 2927”
(@) = gar Co(&) = %QQT
(D) = —g*r Co(€9) = ¢r

— N

It is easy to check that all the other diagrams of order < 3 have a vanishing Cg.
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9.6.2 The Vassiliev knot invariants

In [41] Vassiliev considered the space M of all the possible embeddings of the ori-
ented circle S' in an oriented R? as a subspace of the space of all smooth maps
S — R3, analyzed the possible singularities of such maps, and using that infor-
mation constructed a filtration of M and a spectral sequence that converges to its
cohomology. The connected components of M correspond simply to oriented knot
types, and therefore each element of H°(M) is a knot invariant. Vassiliev then uses
his topological machinery to partially compute H°(M), and based on his machinery,
Birman and Lin [10] arrived at the following properties which a numerical invariant
V; of oriented knots that comes from the i’s level of Vassiliev’s filtration has to satisfy:

1. V; has an extension (which T will also denote by V;) to an invariant of smooth
immersed circles, which are allowed to have finitely many transversal self-
intersection. We will call such immersed circles embedded graphs.

2. V(D) =o.

3. Overcrossings, undercrossings and self-intersections are related by:
N /
Vil ) = Vil ) =V X)), (9.23)

This relation will be called the flip relation. (As usual in knot theory, when we
write X , X or >< , we think of them as parts of bigger graphs which are
identical outside of a small sphere, inside of which they look as in the figures).

4. If a graph G has more than 7 self-intersections, then V;(G) = 0.

The third and fourth properties taken together imply that if a graph GG has exactly
i self-intersection, than V;(G) depends only on the abstract graph underlying G, and
not on its embedding. Such a graph will be called saturated. A simple way of repre-
senting such a graph is by the diagram underlying it, which is obtained by drawing a
circle in the plane corresponding to the parameterization of G, and connecting using a
dashed line every two points of that circle which are identified in GG. For an example,
see figure 9.11.

Figure 9.11. The diagram corresponding to a saturated graph with i =2

Example A somewhat tautological example is easily derived from the Conway poly-
nomial [19, 31]. Fix i > 0, let G an embedded graph with j self-intersections, and let
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K1, ..., Ky to be the 27 possible resolutions of G — the 27 knots obtained by replac-
ing each of the j self-intersections in G' by either an overcrossing or an undercrossing.
Let I'(K)(z) be the Conway polynomial of a knot K, and define

27
V(@) ¥ coefficient of 2 in 37 (—1)# of mdercrossings in Km . P (J¢_ ) (2). (9.24)

i
m=1

I have already defined V" for graphs, and there is nothing to check for property 1.

Property 2 is the fact that I’ ( Q ) = 1 is independent of z, and property 3 is trivial
from the definition (9.24). By the defining relation of the Conway polynomial

r(A)-r()==1(~)
and property 3, it follows that
KF(X):%EI(X>:

and this proves that if j > i then V' (G) = 0, as required in property 4. Using the
results of the previous section one can check that if GG is a saturated graph and D is
its corresponding diagram, then V' (G) is equal to the coefficient of N in CSZ(N,C)(D)'

We saw that underlying the Vassiliev invariants there is an assignment of weights
to a certain collection of diagrams, D — V;(D), just like the assignments Cg and Cj,.
The Vassiliev assignments are not arbitrary — they have to satisfy certain consistency

conditions: (These conditions were first written explicitly by Birman and Lin in [10])

Claim 7 Whenever four diagrams S, E, W, and N differ only as shown in fig-
ure 9.12, their weights satisfy

Vi(S) = Vi(E) = =Vi(W) + Vi(N). (9.25)

Figure 9.12. The diagrams S, E, W, and N. (The dotted arcs represent parts
of the diagrams that are not shown in the figure. These parts are assumed to
be the same in the four diagrams)

Proof Let SW be the almost saturated (i.e. having i — 1 self-intersections) graph
shown (partially) in figure 9.13. Pieces of the x and y axes near the origin serve as
arcs in that graph, as well as a third line 2’ parallel to the z axis but transversing
the x — y plane South-West of the origin. Let NVE be the same, only with the third
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line 2’ moved to transverse the x — y plane North-East of the origin. There are two
ways to calculate V;(NE) in terms of V;(STW) and the weights of saturated graphs
using the flip relation — by moving 2’ from SW to NE along the two dotted paths
in figure 9.13. The two ways must yield the same answer, and therefore the four
saturated graphs corresponding to 2’ intersecting the x and y axes South, East, West
and North of the origin have diagrams whose weights are related. With the sign
convention of (9.23), this relation is seen to be (9.25).

0
N
.->A
W———>F
z Y
S

Figure 9.13. The graph SW and the two ways of getting from it to N E. Notice
that 2’ is perpendicular to the plane and therefore appears as a single dot.

It is easy to see that the weight systems Cg and Cy satisfy the relation (9.25).
Simply use the relations (9.6) and (9.22) in two different ways (marked 1 and 2) on
the diagram:

Claim 8 (Birman-Lin) If a diagram D contains a dashed line whose endpoints on
the circle are not separated from each other by an endpoint of any other line in D,
then V;(D) = 0.

Proof An embedded graph G whose corresponding diagram is D would have a kink
R By the flip relation (9.23), V;(G) = V;(G°) — V;(G"), where G° (G") is a version
of G in which the kink was resolved to an overcrossing (undercrossing). But G° and

G" are isotopic, and therefore V;(G) = 0.
a

It is a trivial consequence of lemma 9.6.1 that The weights Cj satisfy the relation
in claim 8.

We have just solved a problem posed by Birman and Lin in [10] — to find non-
trivial solutions to the relations in the last two claims.
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Chapter 10

Perturbation theory beyond two
loops

Following Witten [47], T will sketch here how we expect the perturbation theory of
the Chern-Simons gauge theory to behave on a general three manifold and to higher
order in 1/k.

In [42, 43] Witten used very different techniques than those presented here to
find a complete non-perturbative definition of the Chern-Simons gauge theory. The
part of his solution that is relevant for making a comparison with the results proven
here was reviewed in the previous chapter, and that comparison showed a complete
agreement between the two approaches. The solution involves three subtleties that
are hard to predict by just observing the definition of the theory in equation (1.2):

1. Links have to be framed. According to Witten’s solution W(M?3, X k) cannot
be defined as it is for a bare link X', but one also has to choose a framing for
each of the components of X and only then W(M?, X, k) can be defined. Its
definition will then depend on the choice of the framing in a prescribed manner.
This point was explained in some more detail in the chapter 5.

2. Three-manifolds have to be framed. According to Witten’s solution W(M?, X, k)
cannot be defined as it is for a bare three-manifold A3, but one also has to
choose a framing for M? — a choice up to homotopy of a trivialization of
the tangent bundle of M3, and only then W(M?3, X, k) can be defined [44, 3].
(Actually, something a little less than a framing of M3 is enough [44, 3]-it is
enough, roughly speaking, to have a framing modulo torsion.) Its definition will
then depend on the choice of the framing in a prescribed manner. As we were
working on a flat R? we have not encountered this subtlety in this paper. We
can consider this subtlety and the previous one as cases of a broken symmetry
— as framings do not at all appear in (1.2) it is trivialy invariant under a change
of framing and this symmetry is broken in Witten’s solution.

3. Analyticity near k = oo is lost." Naively one sees that as k — —k in (1.2),

!Some authors [26, 27] dispute this point, which is usually referred to as “the shift in k7. It is
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W(M?3, X, k) transforms to its complex conjugate. This property of W together
with analyticity near k = oc means that we expect the even powers in the 1/k
asymptotics of W to be real and the odd ones to be imaginary. This property
is lost in Witten’s solution as can clearly be seen from equations (6.1), (6.2),
(6.3) and (6.5) in which k always appears ‘shifted’ by N.

All of the above mentioned subtleties seem not to appear in a naive Feynman-
diagrammatic expansion of W, and the purpose of this chapter is to show how these
points probably do appear in perturbation theory after all.

Formally writing down the sums of Feynman diagrams that we expect to yield
higher three-manifold and link invariants and translating them into finite dimensional
integrals is routine and easy. It is also not hard to produce a formal invariance
proof for these integrals as explained in chapter 7, ignoring the analytical difficulties
arising from the divergence of those integrals. We will see below how resolving these
analytical difficulties is likely to explain the three subtleties listed above.

The origin of the above mentioned analytical difficulties is the singularities Greens’
functions have near the diagonal. These get milder for higher order differential op-
erators. This suggests trying to regularize (1.2) by adding higher order terms to the
Lagrangian preserving as much symmetries as possible so as not to spoil the metric
independence argument of chapter 7. (Physicists call such a procedure Pauli-Villars
regularization.) The main ingredient of this argument is BRST invariance (lemma
3.1), and if we wish to preserve it we can only add terms that preserve gauge invari-
ance. The only such term of order two is the square of the norm of the curvature of
the connection A and therefore we will make the replacement

def

£tot — £regularized = £tot + 6‘ ‘FA‘ ‘2-

(In fact, to preserve the ellipticity of the quadratic part of Leguarized One also has
to change the gauge-fixing term of £;,; and this forces changing @ slightly. Making
those changes is easy and does not affect the rest of our reasoning, so we will ignore
them.)

Let as now pretend that L,eguiarized gives rise to a finite perturbation theory. (Ac-
tually, this is true except for the role of a few low order subdiagrams.) What will
remain of the invariance argument (7.6)7

Lemma 3.1 and lemma 3.3 will still hold because we have preserved gauge invari-
ance, but as the additional term in L,¢gyiarizeq is metric dependent, lemma 3.2 will not
be true any more. Instead, the variation of Lyepuiarizea under g¥ — g + §g* will be
given by

6£regularized = QA + €6| |F1A||2

and therefore in the notations of (7.6) we will have

0{0)c = €(Od[| Fa[|*). (10.1)

very likely that in the context of the regularization suggested below no changes need to be made to
the assertions in this paper.
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where the subscript € in ( - ). is meant to remind us that we are taking expectation
values with respect to a Lagrangian that depends on e. Of course, equation (10.1) (and
equations (10.2)-(10.5) as well) should be understood as an equality of perturbative
asymptotic expansions, and its proof will be based on (7.6) as explained in chapter
7. If {O). had a limit as ¢ — 0 and (Od||F4||?). was bounded as ¢ — 0 we could have
taken this limit and it would have been metric independent. One cannot expect this
to be true. However, the divergences in (O4||Fa||?). for € — 0 originate from a very
definite type of contribution to the Feynman diagrams, and by considering how such
divergences can originate, one can obtain results that are nearly as good as the naive
results that would have held if there were no divergences. In explaining this, we will
consider the basic case O = 1.

It is convenient to consider only the connected Feynman diagrams and as is well
known [36, 21, 29] the sum of those is just log(1).. Divergences in Feynman diagram-
matic contributions to log(1). and to

d (log(1),) = 6<6+§12>6

come from a region of integration in which all integration points are separated by
distances of order e. This means that the divergences can be expanded in terms
of local differential geometric invariants — the metric, the curvature tensor, and its
covariant derivatives. This expansion is analogous to the short time expansion of the
heat kernel. The most general divergent terms are of the form

(10.2)

log(1). = i—;V + %R + finite terms (10.3)

and )
(6] | Fal[?)

(1)
Here ¢y, ¢y, and ¢3 are constants (or more exactly functions of & only, which must be
computed order by order in perturbation theory, but do not depend on the particular
three manifold or metric). Also, V is the volume of M?, R is the integral over M?* of
its scalar curvature, C' is the Chern-Simons number associated with the Levi-Civita
connection and 6V, dR, 6C are the variations of these quantities with respect to
g9 — ¢ + §g¥. The expansion (10.4) is determined by the following principles. (i)
The terms on the right hand side must be closed one forms on the space of metrics
(since the left hand side of the equation has this property.) (ii) The coefficients of
these closed one forms must be local functionals of the metric. What has been written
on the right hand side of equation (10.4) is the most general expression with these
properties. The general principles do not determine ¢y, ¢, and c¢3, which from this
point of view must simply be computed order by order in perturbation theory.
Equation (10.4) means that (1), does not converge as ¢ — 0 to a topological
invariant. Indeed its variation (10.2) not only does not vanish as € — 0; it diverges

= 55V 4+ 26R + 25C + finite terms. (10.4)
€ € €
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in this limit. If, however, we define?
. C C
Wrenormalized = <1>renormalized d:ef exp lg% <10g<1>e - 6_;‘/ - :QR - C3C> (105)

then (10.3) shows that Wienormalizea is finite while (10.1) and (10.4) shows that it is
an invariant. Here we see where the framing of M? comes in — to define C' we must
first pick a trivialization of the tangent bundle and so the invariants that we have
just produced depend on a choice of such a trivialization.

Notice that dC, in equation (10.4) does not depend on the choice of a framing,
but C does. What is entering here is clearly a sort of local cohomology of the space
of metrics. The local, closed one forms 6V, 6 R appearing in (10.4) can be written
as variations (exterior derivatives) of local functionals of the metric. But 6C, though
itself a local functional and a closed one form, cannot be written as the variation of
a local functional. (If 6C' were itself not local, it could not arise in the intrinsic local
evaluation of Feynman diagrams that leads to equation (10.4).)

Similarly, in the case of a non-empty link X we do not expect that the higher
order Feynman diagrams will converge to link invariants, but instead we expect them
to converge to something whose variation with respect to a deformation of A will be
equal to some constant multiple of the variation of the total torsion of X. (The torsion
will enter just as the Chern-Simons number C' entered in the above discussion.) The
total torsion can then be subtracted out yielding link invariants at the price of having
to introduce a framing for X — the total torsion can be defined only given such a
framing. This agrees with the results of Witten and with the results in chapter 3.

Unfortunately, we were just pretending that the theory defined by L,equiarized is
finite. In fact, it is not. One can figure out how badly divergent the theories defined
by Lio and Lyeguiarizea are by taking a diagram with a specified number of vertices
and arcs, measuring the total degree of singularity of the arcs and vertices, and
subtracting the number of integrations that the vertices induce. The result, the so-
called “superficial degree of divergence” A of a diagram with Ep external gauge lines,
Er external ghost lines and L internal loops is

1
A(['tot) =3 EB - §EF ; A(['regularized) =4—-L— EB - EF (106)

Clearly, the regularized theory is less divergent than the original one, but (10.6)
shows that even in the regularized theory the diagrams with a small number of loops
and external lines will be divergent and as these diagrams appear as subdiagrams in
diagrams with higher complexity we cannot just ignore them. One can check that

2This is consistent with what is usually called renormalization - it just corresponds to adding
—4V — 2R — c3C to the original Lagrangian as the limit ¢ — 0 is taken. In fact, the above
paragraph can be summarized by saying that these three terms are the only possible local BRST
invariant additions to the Lagrangian which are of the right dimension. Notice that all three terms
depend on the metric alone and not on the fields, and therefore the n-point functions of the theory
are not renormalized and thus no care needs to be taken of the renormalization of lower order
diagrams when considering the renormalization of a fixed order in perturbation theory.
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even if higher terms than €||F,4||* are added to L;,; and even when considering the
reduction in the divergence that comes from gauge invariance® one loop diagrams
with one, two , or three external legs will remain divergent in the resulting theory.
Yet, we believe that the following is true:

Conjecture 1 (Witten, [47]) The analysis in (10.3), (10.4), and (10.5) can be jus-
tified, and the resulting invariants Wienormalizea coOincide with the expansion in powers

of 1/k of the results in [42, 43].

One-loop diagrams in the Chern-Simons theory have been regularized using (-
function regularization in [42, 7] and in chapter 5 of this thesis, and using Pauli-
Villars regularization in [2]. In both these regularizations the ‘shift in &’ is observed
consistently with the above conjecture.

3Qc¢ = ¢, and therefore (¢(x)¢(y)) = 0. This together with the structure of the ¢ B propagator
proves that the amputated two-point function is given by x*d" of a (1,1)-form whose convergence
properties are by one degree better. For a similar example, see e.g. [12, pp. 299-300].
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