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Chapter 1The basi
 idea
1.1 The Chern-Simons path integralThe aim of this thesis is to explain some te
hniques originally developed by physi
istsstudying quantum �eld theory, and to show how they 
an be used to derive threemanifold and knot invariants. The basi
 idea is simple and to make it even simplerwe will ignore knots for a moment and explain it �rst for the 
ase of a bare threemanifold. Our invariants will be 
omplex numbers. To get a 
omplex number out ofa bare three manifold, that has no additional stru
ture on it, is hard. It is a lot easierto get numeri
al quantities when there is more stru
ture to play with. So we look ata three manifold with an additional pie
e of stru
ture, generate a 
omplex numberusing this additional stru
ture, and then try to integrate our 
omplex number over allpossible 
hoi
es of su
h an additional stru
ture. The additional stru
ture that we willpi
k will be a 
onne
tion on some pre-pi
ked bundle1 on an oriented three manifoldM3, and the 
omplex number that we will generate, the integrand in our program,will essentially be the exponential of the `Lagrangian' | the Chern-Simons number[17℄ asso
iated with the 
onne
tion A:
s(A) = 14� ZM3 tr(A ^ dA+ 23A ^ A ^ A);and so our invariant will be2:W(M3; k) = ZADA e ik4� RM3 tr(A^dA+ 23A^A^A):: (1.1)(k is an integer parameter whose importan
e for our purposes will be made 
learshortly).1Namely, a prin
ipal G-bundle for some Lie group G. We also assume that G 
omes equippedwith a bilinear non-degenerate invariant form tr on its Lie algebra G.2For histori
al reasons, su
h integrals over in�nite dimensional spa
es are 
alled path integrals.For the origin of the name, 
he
k [22℄. 5



To in
orporate a link X = fX
g�
=1 into the above pi
ture, we have to pi
k a listfR
g�
=1 of �nite dimensional representations of G, and supplement the integrand:W(M3;X ; k) def= * �Y
=1OX
 ;R
+ = ZADA �Y
=1OX
 ;R
 (A)eik 
s(A) (1.2)Where3OX;R(A) = trR Pexp�Z ds _X i(s)Ai(X(s))� = dimR � Z ds _X i(s)Aai (X(s))R�a�+ Zs1<s2ds1;2 _X i1(s1) _X i2(s2)Aa1i1 (X(s1))Aa2i2 (X(s2))R�1a1�2R�2a2�1 � � � � : (1.3)(1.3) is, of 
ourse, just the tra
e of the holonomy of the 
onne
tion A along X in therepresentation R, expanded in powers of the 
onne
tion A.1.2 Perturbation theory and Feynman diagrams1.2.1 Introdu
tionLu
kily, the spa
e of all 
onne
tions A is an aÆne spa
e and so there should be a
anoni
al 
hoi
e for a measure on it | the Lesbegue measure. Unlu
kily, A is anin�nite dimensional spa
e and so that measure doesn't really exist. To go aroundthis we will use perturbation theory te
hniques that were originally developed byphysi
ists to be used in quantum �eld theory. Instead of attempting to 
al
ulate theintegral (1.1) as it is, we will try to investigate its asymptoti
 behavior as k=2�i!1.It will turn out that (assuming that in�nite dimensional Lesbegue measures do exist)to determine this asymptoti
 behavior requires only evaluating �nite dimensionalintegrals represented by so-
alled \Feynman diagrams", and therefore it is possibleto de�ne the asymptoti
 behavior of (1.1) to be given by those \Feynman diagrams",without ever giving meaning to the integral (1.1) itself. I will very brie
y presentthese te
hniques here. Further information 
an be found in any quantum �eld theorytextbook su
h as [36, 21, 29℄.To illustrate the te
hnique of Feynman diagrams, let us �rst look at a simpler�nite dimensional analogue | let L be a smooth real-valued fun
tion with �nitelymany stationary points fxigIi=1 on Eu
lidean spa
e RN (a `Morse' fun
tion), and letus try to understand the k !1 asymptoti
s of:Zk = ZRN dNx eikL:3In this formula, as throughout the rest of this thesis, the Einstein summation 
onvention applies| there is an impli
it summation over indi
es (su
h as i, a, �, : : :) that are repeated twi
e. Alsonoti
e the di�eren
e between trV and tr | in this thesis tr will always refer to an invariant bilinearform on a Lie-algebra, while trV is just the usual matrix tra
e in End[V ℄. Many times the subs
riptV will be omitted and matrix tra
es will simply be denoted by tr.6



Namely, we will try to �nd 
onstants W0, W1, : : : so that asymptoti
allyZk = ZRN dNx eikL �k!1 IXi=1W(i)0 eikL(xi) 1Xm=1 W(i)mkm : (1.4)1.2.2 The stationary phase approximationThe �rst step, even before Feynman diagrams are introdu
ed, is to use the station-ary phase prin
iple whi
h says that to zeroth order in 1=k, the large k behavior ofR exp ikL is given byZRN dNx eikL �k!1 IXi=1 e i�4 sign L(xi)q(4�k)N jdetL(xi)jeikL(xi): (1.5)Here L(xi) is the Hessian matrix of L at xi. In other words, detL(xi) is the deter-minant of the operator L(xi) : TRNxi ! TRNxi de�ning (using the Eu
lidean innerprodu
t) the quadrati
 approximation to f(x) around xi. signL(xi) is the signatureof that quadrati
 approximation, i.e. the di�eren
e between the number of positiveand the number of negative eigenvalues of L(xi).The intuitive justi�
ation of (1.5) is the following. When k is positive and largeand x is not near a stationary point, kL varies very rapidly around x, exp ikL os
illatesvery rapidly, and therefore the points near x 
ontribute very little to R exp ikL. If xis near the stationary point xi, then in a 
oordinate system f�ng around xi in whi
hL(xi) is diagonal with eigenvalues f�ng we 
an approximateL(x) �x � xi L(xi) + NXn=1�n�2n:This means that the 
ontribution to R exp ikL from the points near xi 
an be approx-imated by eikL(xi) lim�!0 ZRN dN� exp NXn=1 ik�n�2n � ��2n! ; (1.6)where the 
onvergen
e fa
tor���2n was inserted to a

ount for the 
an
ellations arisingfrom the rapid os
illations of the integrand for large �. Computing the Gaussianintegral (1.6) and then taking the �! 0 limit, we get(1:6) = eikL(xi) NYn=1 e i�4 sign �n2q�kj�nj :Summing over the stationary points, this is exa
tly (1.5).A rigorous and more 
omplete treatment of the stationary phase prin
iple 
an befound in se
tion 7.7 of H�ormander's book [28℄.7



1.2.3 Feynman diagramsHaving 
omputed the k independent 
onstant fa
tor Z in (1.4), we will next try tounderstand the part of (1.4) that does depend on k. For simpli
ity, let us now assumethat L has just a single stationary point on RN , that this point is the origin, thatL(0) = 0, and that L near 0 is given by the sum of a non-degenerate quadrati
form and a 
ubi
 
orre
tion to it. Therefore, the integral whose large k asymptoti
behavior we want to determine is:Zk = ZRN dNx eik( 12�ijxixj+�ijkxixjxk): (1.7)The general 
ase is not any harder.By a simple 
hange of variables,~x! ~x0 = pk~x; (1.8)(suppressing primes) Zk = k�N=2 ZRN dNx ei 12�ijxixje ipk�ijkxixjxk (1.9)= k�N=2 ZRN dNx ei 12�ijxixj 1Xm=0 imm!km=2 (�ijkxixjxk)m: (1.10)And so the mth term in our asymptoti
 expansion will be given up to a multipli
ative
onstant by: ZRN dNx ei 12�ijxixj (�ijkxixjxk)m =this is a simple Gaussian integral, whi
h we 
an evaluate using standard methods:= "(�ijk�i��Ji �i��Jj �i��Jk )m ZRN dNx ei 12�ijxixj+iJixi# ~J=0/ "(�ijk�i��Ji �i��Jj �i��Jk )me�i 12�ijJiJj# ~J=0 ; (1.11)where �ij is the inverse of �ij: �ij�jk = Æi k.Now there are no more integrations to perform. The expression that we obtained
an 
learly be expanded further. The result of applying a di�erential operator to anexponential is a polynomial times that same exponential, and as we are evaluatingthis polynomial at 0, we are interested in its 
onstant term. If we apply the 3m di�er-entiations in (1.11) one at a time and use Leibnitz' rule to separate the derivatives to`those that a
t on the exponential' and `those that a
t on the polynomial' we see thatthe two types of di�erentiations have to be paired together | ea
h di�erentiationthat a
ts on the exponential `brings down' a fa
tor J , and ea
h di�erentiation thata
ts on the polynomial eliminates su
h a fa
tor. Remembering from (1.11) that the8



di�erentiations 
ome in triples 
oupled by a �ijk, we 
an represent the 3m di�eren-tiations in (1.11) by m `
ubi
' verti
es, and every pairing that 
ontributes to (1.11)
an be represented by a way of 
onne
ting these 3m verti
es to make a graph. Thegraphes that are 
reated in this way are 
alled Feynman diagrams. Ea
h vertex insu
h a diagram 
ontributes a fa
tor �ijk, and ea
h edge a fa
tor �ij (
oming fromthe exponent in (1.11)). In summary, to evaluate (1.11) we 
al
ulate a sum over allFeynman diagrams with m 
ubi
 verti
es of order three where the 
ontribution ofea
h su
h diagram is a produ
t of �ijk's for ea
h vertex and �ij's for ea
h ar
.Example The term with m = 2 will be 
omputed as follows:W2 = "(�ijk�i��Ji �i��Jj �i��Jk )2 ZRN dNx ei 12�ijxixj+iJixi# ~J=0= "(�ijk�i��Ji �i��Jj �i��Jk )(�i0j0k0�i��Ji0 �i��Jj0 �i��Jk0 ) ZRN dNx ei 12�ijxixj+iJixi# ~J=0\=" 60B��ijk 1z}|{�i 2z}|{�j 3z}|{�k 1CA0B��i0j0k0 1z}|{�i0 2z}|{�j0 3z}|{�k0 1CA e���+90B��ijk 1z}|{�i 1z}|{�j 2z}|{�k 1CA0B��i0j0k0 2z}|{�i0 3z}|{�j0 3z}|{�k0 1CA e���= (num1)�ijk�i0j0k0�ii0�jj0�kk0 + (num2)�ijk�i0j0k0�ij�kk0�i0j0:The pairings in the last equation are represented by the following diagrams:'& $%ij k i0j 0k0 ��������ij k i0j 0k0It is not hard to see that in generalm is also equal to the number of independent loopsin a diagram. Therefore we will also 
all the m'th order term in su
h an asymptoti
expansion the m-loop term. It is 
ustomary to 
all the ar
s of a Feynman diagrampropagators.1.2.4 Expe
tation values of polynomialsRe
all from (1.2) that the quantity that we are trying to 
ompute is not just R DAeikL,but it is the expe
tation value of a 
ertain fun
tion QOX
 ;R
 (A) of A with respe
t tothe measure eikLDA. The fun
tions O are written expli
itly in (1.3) in terms of theirTaylor series expansion. Therefore, to understand the integral (1.2) we �rst have tounderstand integrals as in (1.7), only with an additional polynomial P (~x) multiplyingthe integrand. Moreover, after res
aling ~x as in (1.8) and 
arrying out exa
tly thesame analysis as in (1.9) { (1.10) with an additional P (~x) multiplying ea
h integrand9



we see that in the mth order term in our revised asymptoti
 expansion will be givenby: Xm=m1+m2 ZRN dNx ei 12�ijxixjPm1(~x)(�ijkxixjxk)m2 ;where Pm1(~x) denotes the part of P (~x) whi
h is homogeneous of degree m1 in ~x.Noti
ing that just as before we ended up having to 
al
ulate the expe
tation valueof a polynomial �Pm1(~x)(�ijkxixjxk)m2� with respe
t to a Gaussian measure, we 
annow use the same tri
ks and repla
e the above integral by a sum of `revised' Feynmandiagrams that are also allowed to have a single ex
eptional vertex of some order m1,weighted by the 
oeÆ
ients of Pm1(~x).1.3 The gauge-�xed Lagrangian1.3.1 Gauge invarian
eRe
all that M3 is an oriented three manifold, G is a Lie group with an invariantintegral bilinear form tr on its Lie algebra G and P ! M3 a prin
ipal G-bundle onM3.The Chern-Simons Lagrangian 
s(A) is de�ned for a 
onne
tion4 A by:
s(A) = 14� ZM3 tr(A ^ dA+ 23A ^ A ^ A);where tr(A1 ^ A2 ^ A3) def= 12(trA1 ^ [A2; A3℄) = 12 tr([A1; A2℄ ^ A3), and so relative tosome 
hoi
e of 
oordinates and a trivialization of P ,5
s(A) = 18� ZM3�ijktr(Ai(�jAk � �kAj) + 23Ai[Aj; Ak℄):It is invariant under in�nitesimal gauge transformations in whi
h ÆA = �D
 def=�(d
+ [A; 
℄):4�Æ
s = � ZM3 tr ((d
+ [A; 
℄) ^ dA+ A ^ d[A; 
℄+2(d
+ [A; 
℄) ^ A ^ A)= � ZM3 tr([A; 
℄ ^ dA+ A ^ [dA; 
℄� A ^ [A; d
℄ + 2d
 ^ A ^ A)�2 ZM3tr[A; 
℄ ^ A ^ A= ZM3tr 
 ^ [A; [A;A℄℄ = 0:4We will be slightly impre
ise and regard A as a G-valued 1-form on M3.5In the formula below �ijk denotes the totally antisymmetri
 tensor in three dimensions | �ijk =sign (ijk) if ijk is a permutation of f1; 2; 3g and �ijk = 0 otherwise.10



This implies that 
s(A) is invariant under gauge transformations that 
an be pathwise
onne
ted to the identity transformation. As it turns out (see [17℄), 
s(A) is notinvariant under general gauge transformations and, in fa
t, in our normalization it isde�ned only up to a multiple of 2�. This explains our 
hoi
e of the normalization |we have 
hosen pre
isely that normalization for whi
h the exponential in (1.1) is wellde�ned.The gauge invarian
e of 
s(A) has an unpleasant 
onsequen
e | the stationarypoints of are ne
essarily not isolated, and the quadrati
 part of 
s(A) near a stationarypoint 
annot be non-degenerate. The dis
ussion of Feynman diagrams in the previous
hapter depended in an essential way on the invertability of that quadrati
 part, andtherefore 
annot be applied here without modi�
ation.1.3.2 The Faddeev-Popov pro
edureTo resolve the above 
ompli
ation we will on
e again look at our �nite dimensionalanalogue, assume that the Lagrangian there, 12�ijxixj+�ijkxixjxk, is invariant underthe isometri
al non-degenerate a
tion of an l-dimensional Lie group G, and try toevaluate the integral (1.7) without redundant integration over the orbits of G.We will visit ea
h orbit of G just on
e by 
hoosing a fun
tion F : Rn ! Rl thathas a unique zero on ea
h G-orbit, and inserting a Æl(F (~x)) into the integral. If wewant the result to be the same as the full integration and independent of F we needto add a 
orre
tion term that 
orresponds to the volume of the G-orbit through ~xand as the a
tion of G is by isometries this term 
an be 
al
ulated lo
ally at a point~x satisfying F (~x) = 0. It is given by the inverse ratio of the volume element of theLie-algebra G of G and its image in Rl under the a
tion of G 
omposed with F . Thatis to say | we have to look at6:Z = ZRN dNx eik( 12�ijxixj+�ijkxixjxk)Æl(F (~x)) det �F a�Gb ! (~x):(fGbglb=1 is a set of generators for G)We will try to �nd a diagrammati
 representation for the asymptoti
 expansionof Z. The �rst additional term in the integral is easy | we 
an just repla
e it by itsFourier representation: Æl(F (~x)) = ZRl dl� eiFa(~x)�aand then in
orporate F a(~x)�a as a new term in the Lagrangian. The other newterm, det ��F�G �, 
an be dealt with in two equivalent ways. The �rst way is to do theusual res
aling (1.8) and then to expand det ��F�G � in powers of 1pk by �rst separatingdet ��F�G � to a 
onstant part J0 and a part J1(~x) whi
h is a series in 1pk , and then6This expression for Z was �rst derived by Faddeev and Popov in [20℄.11



using det J0 + 1pkJ1(~x)! = det(J0)Xm  1pk!m tr(VmJ�10 )(VmJ1(~x)): (1.12)(Vm J is the mth exterior power of the matrix J). Noti
e that J0 is just a 
onstantmatrix, while J1(~x) depends on ~x. It will now be possible to regard (1.12) as apolynomial in ~x and get a Feynman diagram expansion. It is an exer
ise in elementaryalgebra to show that the polynomial (1.12) 
an itself be in
orporated into the theFeynman diagrams by introdu
ing a new type of propagator denoted by dire
teddotted lines that 
orresponds to J�10 and a 
olle
tion of new types of verti
es ea
h
onne
ting two dotted propagators with some dashed propagators | depending onthe exa
t form of J1(~x). (There will also be some alteration to the 
ombinatorial ruleof determining the numeri
al fa
tor multiplying ea
h diagram).The other way of dealing with det ��F�G � is the one 
ommonly used in the physi
sliterature and the one that we will be using here. It involves the idea of anti-
ommutative integration. Non-
ommutative integration is treated in many pla
es(see e.g. [9, 36, 21, 29℄), and I will not explain it here in detail. Very brie
y, `anti-
ommuting' variables (
alled `ghosts') f�
agla=1 and f
bglb=1 are introdu
ed togetherwith a reasonable set of rules of integration with respe
t to them, and it is shownthat for any matrix Jab Z dl�
dl
e�
aJab
b / det(J): (1.13)(This is analogous and 
omplementary to standard Gaussian integration | in whi
hthe resulting determinant is in the denominator).Using this, Z 
an �nally be written asZ / ZRN dNx ZRl dl� Z dl�
 dl
 ei(k( 12�ijxixj+�ijkxixjxk)+Fa(~x)�a)+�
a( �Fa�Gb )
b = Z eiLtot:Now we 
an use almost the same pro
edure as in (1.9) { (1.11) to get a diagrammati
expansion for the asymptoti
 behavior of Z. Again it turns out that this involvesintrodu
ing a new propagator and some new verti
es.As we will see below for the 
ase of interest for us | the Chern-Simons Lagrangian| we will be able to 
hoose F in a way so that the quadrati
 part of the supplementedLagrangian will indeed be invertible.1.3.3 Gauge-�xing for the Chern-Simons a
tionLet A0 be an arbitrary stationary point for 
s, i.e.: Æ
sÆA (A0) = 0, whi
h means FA0 =dA0 + 12 [A0; A0℄ = dA0 + A0 ^ A0 = 0, let D denote the exterior derivative d twistedby A0, and for A an ad(P )-valued 1-form on M3 de�ne L(A) = 
s(A0 + A):L(A) = 
s(A0 + A) = 
s(A0) + 14� ZM3 tr(A ^DA+ 23A ^ A ^ A):12



Choose a trivialization of P , lo
al 
oordinates fxig and a metri
 gij on M3 withg def= det(gij), and get (DA)ij = �iAj � �jAi + [A0i; Aj℄;and Di def= pggijDj = pggij�j +pggij[A0j; �℄:Pi
k the gauge 
ondition k2�DiAi = 0, and get using the Faddeev-Popov pro
edure asdes
ribed in the previous subse
tion:Ltot(A; �; 
; �
) = kL+ Lgauge��xing + Lghosts= k
s(A0) + k4� ZM3 tr(A ^DA+ 23A ^ A ^ A)+ k2� ZM3 tr ��DiAi � i�
Di(Di + ad Ai)
� (1.14)�, 
, and �
 are Lie-algebra valued �elds | � = �aGa, 
 = 
aGa, and �
 = �
aGa for a setof generators fGag of G.
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Chapter 2The Feynman rulesIn this 
hapter we will write the Feynman rules for the Chern-Simons theory, de�nedby the total Lagrangian (1.14). Looking at (1.14) we see that the quadrati
 part ofour total Lagrangian de
ouples to a sum of two quadrati
 forms, one involving A and�, and one involving �
 and 
. Therefore, in the diagrammati
 expansion of R eiLtotthere will be two types of propagators | a dashed line (� � � � ) representing theinverse of the A� quadrati
 form, and a dire
ted solid line (�������!) representingthe inverse of the �

 quadrati
 form. One 
an also see that the 
ubi
 part of Ltot isthe sum of two terms. The �rst of these two terms is 23A ^A ^ A and it 
orrespondsto an order 3 vertex 
onne
ting three dashed lines. The se
ond is �
Di[Ai; 
℄ andit 
orresponds to an order 3 vertex 
onne
ting an in
oming dire
ted solid line, anoutgoing dire
ted solid line, and a dashed line. Also, re
all that we are not just
omputing R eiLtot, but something slightly more 
ompli
ated | R QOeiLtot. Lookingat equation (1.3), we see that the in
lusion of the O's amounts to adding a vertex ofa third type in whi
h a dashed line ends on an ellipse that represents a 
omponent ofthe knot.Other then what was said above, I will skip the pre
ise derivation of the Feynmanrules, and just des
ribe the end result in the next few pages. For simpli
ity we willrestri
t our attention to the 
ase of a single (dire
ted) knot X = fXg. There is nodiÆ
ulty to restri
t the rules given below to the 
ase were there is no knot and weare trying to 
ompute a 3-manifold invariant, or to enhan
e these rules to the 
aseof a many-
omponent link. X will be given by a parametrization X(s) : S1 ! M3,where S1 is the oriented unit 
ir
le.2.1 The diagramsPi
k an integer m, the order, the number of loops. To obtain the m'th invariantWm(X), �rst write all inequivalent 
onne
ted1 Feynman diagrams of order m. A1Restri
ting our attention to 
onne
ted diagrams 
orresponds to 
omputing the asymptoti
s ofW(M3; X; k)=W(M3; k) instead of that of W(M3; X; k).14



Feynman diagram of order m is a diagram made of a single2 dire
ted ellipse (
alled aWilson loop) representing the knot X , a total of 2m 
ubi
 verti
es of three di�erenttypes | type X2A, type �
A
, and type A3, and lines (
alled propagators) 
onne
tingthose verti
es. There are two types of propagators. The gauge propagators denotedby dashed lines � � � � , and the ghost propagators denoted by dire
ted solid lines�������!. The three types of verti
es di�er by the types of propagators they areallowed to 
onne
t. In a type X2A vertex a gauge propagator meets the Wilson looprepresenting the knot. A type �
A
 
onne
ts a gauge propagator with one in
oming andone outgoing ghost propagators. Finally, in a type A3 vertex three gauge propagatorsmeet. Figure 2.1 is an example for su
h a diagram. When looking at that �gure,remember that our diagrams are not allowed to have higher than 
ubi
 verti
es. It istherefore impli
itly understood that when four or more lines meet at the same point,that point is not a vertex and those lines pass ea
h other without \intera
tion".
Figure 2.1. An example for a Feynman diagram of order 4, having 5 type X2Averti
es, 2 type �
A
 verti
es, one type A3 vertex, 5 gauge propagators, and 2ghost propagators.Two diagrams are 
alled equivalent if one 
an set a bije
tive type-preserving 
orre-sponden
e between their verti
es, in a way that 
orresponding verti
es are 
onne
tedby the same type, same orientation, and the same number of propagators and Wilsonloop segments.For example, ifm = 2, the �ve3 diagrams that we write in this stage are illustratedin �gure 2.2.

Figure 2.2. The �ve diagrams of order 2.2Of 
ourse, if we were dealing with a link with � 
omponents we would have had � Wilson loops.3A
tually, few more su
h diagrams 
an be written | but the ones that are not shown in the�gure are all singly 
onne
ted | namely, they 
an be broken apart into two 
omponents by theremoval of a single ar
. It is easy to see that su
h diagrams have a vanishing Lie-algebrai
 
oeÆ
ientif the 
onne
tion A0 of the se
tion 1.3.3 is the zero 
onne
tion on a trivial bundle. We will ignorethese diagrams below. 15



2.2 The pro
edureOur invariantWm(X) will be a sum of �nite dimensional integrals, one 
orrespondingto ea
h Feynman diagram. Let us 
on
entrate in a single diagram D, and see how towrite the �nite dimensional integral 
orresponding to it. This will be done in severalsteps:1. Mark the parts D as follows. Mark every end of every gauge propagator with alower
ase letter from i, j, : : : (thought to represent a spatial index | an integerin f1; 2; 3g). Mark every type �
A
 or type A3 vertex by a letter from x, y, : : :(thought to represent a point in M3). Add a lower
ase letter from a, b, : : :(thought to represented a basis element of G) to every end of every propagator.Finally pi
k a base point on the Wilson loop and follow the loop a

ording to itsorientation marking the X2A verti
es en
ountered along the way by s1, s2, : : :(representing points in the parameter spa
e S1 of X) and marking the segmentsof the Wilson loop 
ut by these verti
es by lower
ase greek letters su
h as �,�, : : : (thought to represented a basis element of the representation R). For anexample, see �gure 2.3.
x y z
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j
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c’

dd’

ee’
f f’c

γ

Figure 2.3. An unmarked diagram and its marking.2. If D is a marked diagram, 
onstru
t an algebrai
 expression E(D) by taking aprodu
t of terms, ea
h 
orresponding to a part of the diagram D as follows:(a) For ea
h gauge propagator in D, marked, say, as i; a i0; a0� � � �x y take the termV aa0ii0 (x; y): (2.1)V abIJ (x; y) is de�ned to be the inverse of the bosoni
 free part of the La-grangian L. The symbols \I" and \J" are either numbers i; j in the range1 � 3, or the symbol �, and with this understood V is de�ned by therelations: (the di�erentiations4 are all with respe
t to x.)tabDipggijV b
j�(x; y) = 2�iÆ
aÆ(x; y);4Remember that D is the 
ovariant derivative with respe
t to the 
onne
tion A0.16



tabDipggijV b
jk (x; y) = 0;tab ��ijkDjV b
kl (x; y) +DiV b
�l (x; y)� = 2�iÆ
aÆilÆ(x; y);tab ��ijkDjV b
k�(x; y) +DiV b
��(x; y)� = 0:If one (or both) of the ends of a 
ertain gauge propagator is an X2A vertex,marked by a point s in the parameter spa
e of X, for the purposes of this
onstru
tion simply repla
e it by the point X(s) 2M3. For example,l; f l0; f 0� � � �z s1 �! V ff 0ll0 (z;X(s1)):(b) For ea
h ghost propagator in D, marked, say, as d0 d�������!y z take the termGd0d(y; z):G is de�ned to be the inverse of the ghost free part of the Lagrangian L| that is to say, it is de�ned by the relation: (the di�erentiations are allwith respe
t to x.) tabDiDiGb
 = �2�Æ
aÆ(x; y):(
) For ea
h marked A3 vertex in D use the rule
x

c

b
a

k

j
i �! i2� ZM3 dx tab
�ijk: (2.2)The symbol tab
 essentially represents the stru
ture 
onstants of G | tode�ne tab
 we pi
k a basis fGag of G, 
ompute the stru
ture 
onstants[Ga;Gb℄ = f 
abG
 and use the bilinear form tr to `lower' the index 
: tab
 =f dabtd
 where tab = tr(GaGb).(d) For ea
h �
A
 vertex in D use the rule
f

e

d

lz �! 12� ZM3 dz tdfeDlz: (2.3)Here Dlz denotes di�erentiation with respe
t to zl,Dlz = pgglm DDzma
ting only on the z-dependen
e of the term 
oming from the ghost propaga-tor leaving the vertex. For a better understanding, let us look at this term17



together with the terms 
orresponding to the propagators surrounding ourvertex:
f’f

e’
e

d’

d

l’

y

x

wlz �! 12� ZM3 dz tdfe �pgglm DDzmGee0(z; x)��Gd0d(y; z)V ll0ff 0(z; w)(e) For ea
h marked X2A vertex in D use the rule
�
�f 0l0 s1 �! �R�f 0
 _X l0(s1): (2.4)Here R�a� is simply the representation R expressed in terms of matri
es |if fr�gdimR�=1 is a basis of R, then R(Ga)r� = R�a�r�.(f) Noti
e that by the restri
tions we have on the types of allowed verti
es inD, the ghost propagators must form a set of disjoint 
losed loops. The lastterm in E(D) will be (�1)F ; (2.5)where F is the number of su
h loops.3. Now integrate the variables s1, s2, : : : over S1 preserving their 
y
li
 order.4. Divide the resulting integral by a 
ombinatorial fa
tor, S(D). For a diagramD, S(D) is the total number of symmetries of D. A symmetry of a digram Dis a bije
tive self-map on the set of verti
es and ar
s in D, whi
h sends a vertexto a vertex of the same type, a propagator to a propagator of the same type,a Wilson loop segment to a Wilson loop segment, and preserves beginning andend points | the image of the beginning and end points of an ar
 have to bethe beginning and end points of the image of that ar
. For example, the weightsS(D) of the �ve diagrams in �gure 2.2 are 4, 2, 2, 4, and 3 respe
tively, whilethat of the diagram in �gure 2.3 is 1.Example The 
omplete expression 
orresponding to the diagram in �gure 2.3 isi8�3 Zs1<s2<s3ds1�3 Z d3xd3yd3z ta0d0e0tdfetab
�ijkR�f 0
R
b0�R�
0�� _X l0(s1) _Xj0(s2) _Xk0(s3) �Di0yGd0d(y; z)� �DlzGee0(z; y)��V aa0ii0 (x; y)V ff 0ll0 (z;X(s1))V bb0jj0 (x;X(s2))V 

0kk0 (x;X(s3))(In this integral the domain de�nition s1 < s2 < s3 should be read as `the set of alls1;2;3 2 S1 for whi
h s2 is between s1 and s3 in the 
hosen orientation of S1', and notas a linear ordering relation). 18



Chapter 3The one-loop 
ontribution
3.1 When M 3 = R3Having developed a general te
hnique in the previous 
hapters, let us now try to applyit in few parti
ular 
ases, and let us start from the simplest 
ase | the 
ontributionof order 1=k toW(
at R3;X ) where X is a one- or two-
omponent link in R3. Thereis just one 
at 
onne
tion on R3 | the trivial one | and we take it to be theba
kground 
onne
tion A0. In this simple 
ase the ghosts and the intera
tion termA^A^A don't yet 
ome into play, and of the in�nitely many terms in the expansionof Pexp only terms up to the se
ond order term will be relevant. That is to say, wejust need to understandW 0 = ZADAD� e ik4� RR3 tr(�ijkAi�jAk+2��iAi)2Y
=1�dimR
 + Z ds _X i
(s)Aai (Xg(s))R�
a�+ Zs1<s2ds1;2 _X i1g (s1) _X i2
 (s2)Aa1i1 (X
(s1))Aa2i2 (X
(s1))R�1
a1�2R�2
a2�1�This is just a simple Gaussian integral. We 
an regard � as a (Lie algebra valued)three-form on R3, A as a one-form, and write the quadrati
 form in our Gaussianintegral as 12 i2� ZR3 tr ��ijkAi�jAk + 2��iAi� = 12 i2� * A� ! ; L�  A� !+for L� def= (d?+?d)J , where JA def= A and J� def= ��. Clearly (L�)2 = � and thereforeV , whi
h is essentialy the inverse of L�, is given by V = 2�iL� Æ G� where G� isthe Green's fun
tion of the (ve
tor + s
alar) Lapla
ian �. In the Eu
lidean 
ase thisGreen's fun
tion G� is given byGab� (x; y) = tab4�jx� yj (tab is the inverse of tab def= tr(GaGb))19



for both the s
alar and the ve
tor 
ases, and so the A part of our propagator is givenby x y� � � �a; i b; jV abij (x; y) = hAai (x)Abj(y)i = 2�i�ikj�kx tab4�jx� yj = �ijktab i(x� y)k2jx� yj3 :The terms of order 1=k are given by the diagrams in �gure 3.1.
X

1

1
X

X2
2XFigure 3.1. First order diagrams3.2 The linking number of two knotsLet us �rst 
onsider the left most diagram. Ignoring the 
onstant numeri
al 
oeÆ
ientthat the representations R1;2 
ontribute it 
orresponds to the integral$(X1; X2) = Z ds1ds2Vij(X1(s1); X2(s2)) _X i1 _Xj2 (3.1)whi
h is the well known Gauss integral representation for 2�i times the linking numberof two knots [38℄. For the sake of 
ompleteness, and also as a preparation for the next
hapter where we will use similar but more 
ompli
ated 
onsiderations to deal withthe two loop 
ontribution, we will review here the proof of the invarian
e of (3.1)under isotopies and show that indeed it 
oin
ides with the linking number.It is possible to view Vij(x; y) is as a (1; 1)-form1 onR3�R3 where (x; y) 2 R3�R3,i is the one form index for the variable x, and j is the one form index for the variabley. Viewed this way, (3.1) is just that form V evaluated on the 
y
le X1 relative to itsleft variable and on the 
y
le X2 relative to its right variable:$ = hX1jV jX2iThe key property required for the invarian
e proof is that there exists a (2; 0)-formF for whi
h dLV = dRF (3.2)1An (m;n)-form onM�N whereM and N are smooth manifolds is a se
tion of ��MTM
��NTNwhere �M :M�N !M and �N :M�N ! N are the proje
tions. Clearly, one 
an de�ne operatorsdL : f(m;n)-formsg ! f(m+1; n)-formsg, dR : f(m;n)-formsg ! f(m;n+1)-formsg, et
. in analogywith the standard de�nitions of de-Rham theory.20



away from the diagonal, where dL is the exterior derivative with respe
t to the leftvariable and dR is the exterior derivative with respe
t to the right variable. Assumingsu
h an F , under an in�nitesimal deformation of X1 we will have (using Stoke'stheorem twi
e)Æ$ = ÆhX1jV jX2i = hThe surfa
e S spanned by thein�nitesimal deformation of X1jdLV jX2i = hSjdRF jX2i = 0: (3.3)As for the existen
e of F , noti
e that by our derivation of V , V = 2�i ? d Æ Gvwhere Gv is the ve
tor part of G�, and therefore ?LdLV = 2�i ? d ? d Æ Gv. Bythe 
ommutativity of ?d and Gv one gets ?LdLV = 2�iGv Æ ?d ? d. Rememberingthat Gv is given by an integral kernel, one 
an integrate by parts Gv Æ ?d ? d to get?LdLV = 2�i ?R dR ?R dRGv = 2�i(�R + dR ?R dR?R)Gv = 2�iI + 2�idR ?R dR ?R Gv.Multiplying from the left by ?L we obtain:dLV = dR2�i ?L ?RdR ?R Gv + 2�i ?L I def= dRF + 2�i ?L I:The formula we just got for F 
an be expanded to giveFij;�(x; y) = �ijk i(x� y)k2jx� yj3 ;and this 
an be used to verify (3.2) dire
tly. Don't let yourself be mislead by theapparent equivalen
e of the formulae for V and for F ! The indi
es are arranged alittle di�erently and verifying (3.2) is a little more than just playing around withthese indi
es | some di�erentiations do have to be 
arried out and the veri�
ationis essentially the same 
al
ulation as the derivation in this paragraph.Having shown that $ is indeed an isotopy invariant we 
an now use it to showthat it 
oin
ides with 2�i times the linking number. Deform the knot so that it willbe almost planar with only `perpendi
ular 
rossings'. Now 
ip one of those 
rossingsus shown in �gure 3.2. Clearly, when 
omparing the 
ontribution to $ from before
Figure 3.2. Flipping a 
rossingand from after the 
ip we 
an integrate the propagator with its endpoints only nearbythe 
rossing. If the 
rossed ar
s are � apart,$(after)� $(before) = i Z ds1;2 �(�2 + s21 + s22)3=2 = 2�i: (3.4)21



This is exa
tly the same relation is satis�ed by 2�i times the linking number, andtogether with $(unlinked 
ir
les) = 0 (3.4) proves that $ is indeed 2�i times thelinking number. To see that indeed $(unlinked 
ir
les) = 0, use the already provenisotopy invarian
e to make sure that the two 
ir
les are very small relative to theseparation between them and then the integral de�ning $ will tend to zero.3.3 The self-linking of a single knotThe situation with the other diagrams in �gure 3.1 is a bit more 
ompli
ated. Let$s(X1) be the `self-linking' of X1:$s(X1) def= 12hX1jV jX1i = 12 Z ds1ds2Vij(X1(s1); X1(s2)) _X i1(s1) _Xj1(s2): (3.5)(We have suppressed here the Lie-algebra 
oeÆ
ient whi
h for R being the de�ningrepresentation of G = SU(N) in CN and for tr being the usual matrix tra
e 
an beseen to equal N2 � 1. For more details see 
hapter 9).For three ve
tors A;B;C it will be 
onvenient to denote �ijkAiBjCk, the volumeof the parallelepiped spanned by ~0; A; B; C by det(AjBjC). Using this notation$s(X) = i4 Z ds1ds2det (X(s1)�X(s2)j _X(s1) ��� _X(s2)�jX(s1)�X(s2)j3 : (3.6)This integral appears at �rst sight to be divergent be
ause of the 
ubi
 term in thedenominator. Nevertheless when s1 and s2 are 
lose, say � apart, X(s1)�X(s2) � �and the three ve
tors X(s1)�X(s2), _X(s1), and _X(s2) are within a 
one of opening� �. Therefore the volume of the parallelepiped spanned by these three ve
tors is� �3 whi
h is enough to suppress the singularity of the denominator. Unlu
kily, theargument in (3.3) doesn't go through | the key relation (3.2) holds only away fromthe diagonal, and in (3.5) our integration domain does interse
t the diagonal.This point has already been treated by C�aalug�areanu [13, 14℄ (see also Pohl [34℄)and later from a physi
al viewpoint by Polyakov [35℄ (see also Tze [40℄). They foundthat indeed (3.5) is not an invariant, but yet it 
an be renormalized by the additionof a lo
al term (essentially the total torsion of X) to give an invariant. It turns outthat to properly de�ne the torsion everywhere X needs to be `framed', and therefore$s will just be an invariant of framed knots. We will arrive at the same results usinga somewhat di�erent regularization whi
h makes the 
urrent 
al
ulation a bit lesstransparent but has a more straightforward generalization for the two-loop 
ase to betreated in the next 
hapters. Let us de�ne $� by the integral (3.6) that de�nes $s,only with the integration domain restri
ted to�� def= [js1 � s2j > �℄:Assume that X undergoes an in�nitesimal deformation X ! X+ÆX def= X+!. As inthe invarian
e proof for the 
ase of a link, (3.3), Stoke's theorem was used twi
e it will22



fail twi
e for this new 
ase and Æ$� will pi
k up four non-zero 
ontributions | one fromea
h boundary term in ea
h of the usages of Stoke's theorem. Denoting the evaluationof di�erential forms on �� by h j j i� and on its two boundaries [s1 � s2 = ��℄ byh j j i� we will get: (S again is the surfa
e spanned by the in�nitesimal deformationof X) Æ$� = 12ÆhXjV jXi�= hSjdLV jXi� + h!jV jXi+ � h!jV jXi�= hSjdRF jXi� + h!jV jXi+ � h!jV jXi�= hSjF j�i+ � hSjF j�i� + h!jV jXi+ � h!jV jXi�: (3.7)We will try to understand the �! 0 limit of Æ$� by expanding (3.7) in powers of�. For s a variable in S1 let X = X(s), _X = _X(s), ! = !(s); : : : ;X�� = X(s� �) � X � � _X + �22 �X � �36 ...X_X�� = _X(s� �) � _X � � �X + �22 ...XUsing these notations, with the dummy integration variable s pi
ked to be at thepoint where ! is evaluated,h!jV jXi� = i2 Z dsdet � _X��j!jX�� �X�jX �X��j3� i2 Z dsdet � _X � � �X + �22 ...Xj!j � � _X + �22 �X � �36 ...X�jX �X��j3� i2 Z ds�2 det �12 �X � �3 ...Xj!j _X � �2 �X�j�j�3j _Xj�3 �1� �3 _X� �X2j _Xj2 � :Therefore (noti
e that the terms of order 1� 
an
el!)h!jV jXi+ � h!jV jXi� � i2 Z dsj _Xj3  �3 _X � �X2j _Xj2 det( �Xj!j _X) + 23 det( ...Xj!j _X)! :Similarilly hSjF j�i� = � i2 Z dsdet( _Xj!jX�� �X)jX�� �Xj3� � i2 Z ds j _Xj3j�j  1� �3 _X � �X2j _Xj2 !det� _X����! ����12 �X � �6 ...X�and therefore (noti
e that again there is no term of order 1� )hSjF j�i+ � hSjF j�i� � i2 Z dsj _Xj3  �3 _X � �X2j _Xj2 det( �Xj!j _X) + 13 det( ...Xj!j _X)! :23



This �nally gives that the �! 0 limit of Æ$� is2Æ$s = i2 Z dsj _Xj3  �3 _X � �Xj _Xj2 det( �Xj!j _X) + det( ...Xj!j _X)! (3.8)and we 
an see that indeed Æ$s 6= 0 and $s is not a knot invariant.3.4 The appearan
e of framingsYet, some further investigation of Æ$s shows that this 
an be 
orre
ted quite easily.De�ne � to be i=2 times the total torsion of the 
urve X | that is to say i=2 timesthe integral with respe
t to ar
 length of the lo
al torsion �(s) (see [18, pp. 22℄) ofthe 
urve, given by the standard formula�(s) = �det( _X(s)j �X(s)j ...X(s))j _X(s)� �X(s)j2 (3.9)whenever the denominator is non-zero. As I will 
omment below, under X ! X + !one 
an show that Æ$s and �Æ� are given by exa
tly the same formula (3.8) so if onede�nes $r = $s + �then $r is invariant under isotopies, so long as the denominator in (3.9) remainsnon-zero.What if that denominator is equal to zero? On the normal bundle of X there is a
anoni
ally de�ned 
onne
tion de�ned by the proje
tion ba
k to the normal bundleof the usual di�erentiation along the knot of ve
tor fun
tions normal to it. i=2 timesthe total holonomy of that 
onne
tion along the knot is some imaginary number,well de�ned up to a multiple of �i whi
h depends on a 
hoi
e of a trivialization forthe normal bundle, and whenever � is de�ned, it will be shown below to 
oin
idewith that number. Hen
e $r is an invariant of framed knots | a framing is just atrivialization of the normal bundle whi
h 
an be used to render � and therefore $swell-de�ned. This ne
essity of framing the knot X agrees with the results of Witten[42℄, but makes $r quite useless for an unframed knot | it is a multiple of �i whi
his well-de�ned only up to a multiple of �i. For a framed knot it 
an be shown alongthe same lines as in (3.4) to be �i times the self-linking of a framed knot | �i timesthe linking number of that knot with its framing.To 
omplete the dis
ussion we need to demonstrate the two di�erential geometri
assertions made above. Very brie
y, if n(s) is any ve
tor not tangent to the knot Xthen the holonomy dis
ussed above 
an be 
al
ulated by measuring how mu
h the2It is not hard to verify that the operations of taking the variation under X ! X + ! and oftaking the �! 0 limit 
ommute. A harder 
he
k of the same kind is des
ribed at the end of se
tion4.3.3. 24



proje
tion of n to the normal bundle fails to be parallel. It is an elementary exer
iseto then �nd that relative to the framing given by n,� = �i2 Z dsj _Xj det _Xj _Xj2 �����n ����� j _Xj2 _n� ( _X � n) �Xj _X � nj2 ! : (3.10)Setting n = �X it is easy to see that (3.10) 
oin
ides with (3.9) and 
hoosing n tobe a 
onstant ve
tor that is not parallel to _X(s) for any value of s simpli�es it themost. One 
an then vary (3.10) under X ! X + ! and integrate by parts until allthe derivatives of ! disappear. One is left with a huge and unfriendly expressionthat with a tremendous amount of labor and juggling with ve
tor identities 
an beshown to equal (3.8). I 
ould not verify this equality without the aid of a symboli
mathemati
s 
omputer program [48℄.3.5 Appendix: The torsion of a spa
e 
urveWhy is it that the relatively 
ompli
ated 
al
ulation of (3.7)-(3.8) gives the relativelysimple answer (3.8)? How 
an we be assured that when 
onsidering higher order per-turbative invariants we will not get uglier formulas for Æ$s for whi
h the 
orre
tingpro
edure of the previous se
tion will not work? A partial answer to these ques-tions will be presented in this appendix | we will see that Æ$s 
an essentially be
hara
terized as the only fun
tional that has 
ertain invarian
e properties, and thatthese invarian
e properties 
an be dedu
ed dire
tly from the de�nition of Æ$s as thevariation of (3.5).Let us start with a de�nition. A 1-form 
 on the spa
e � of smoothly immersedparametrized 
urves in R3 will be 
alled a lo
al variation form if it has the followingproperties:1. It is lo
al. Namely, if X : S1 ! R3 is a smoothly immersed parametrized 
urveand ! : S1 ! TR3 = R3 is a tangent to �, then 
X(!) is given given by theinner produ
t of ! with a ve
tor valued polynomial P in j _Xj�1 and �nitelymany derivatives of X:
X(!) = ZS1 ds DP (j _Xj�1; _X; �X; : : :); !E :The 
oeÆ
ients of P are, of 
ourse, expe
ted to be independent of X and of !.The polynomial P is uniquely determined by 
.2. It is invariant | it is independent of the parametrization of X. Namely, iff : S1 ! S1 is an orientation preserving di�eomorphism, thenP (X Æ f) = _fP (X) Æ f: (3.11)3. It is 
losed as a 1-form on �. Namely, if Æ denotes exterior di�erentiation on �,then Æ
 = 0. 25



4. It is SO(3)-invariant. Namely, if r is a rotation in SO(3), then P (r Æ X) =r Æ P (X).5. It has a vanishing s
aling dimension. Namely, if C : R3 ! R3 is the map givenby multipli
ation by a 
onstant 
, C(x) = 
x, then P (C ÆX) = 
�1P (X).It is easy to verify on apriori grounds that Æ$s is a lo
al variation form | the lastfour properties follow immedietly from the de�nition of $s in (3.5), while the �rstproperty follows after a short glan
e at (3.7).Theorem 1 The form 
0 given by
0X(!) = ZS1 ds * 1j _Xj3  �3 _X � �Xj _Xj2 _X � �X + _X � ...X! ; !+is a lo
al variation form and every lo
al variation form is a 
onstant multiple thereof.Proof The fa
t that 
0 is a lo
al variation form follows from the fa
t that Æ$s issu
h a form, and the 
omputation in se
tion 3.3 whi
h identi�ed Æ$s to be 
0=4�.The uniqueness of 
0 will be proven by writting the most general SO(3)-invariant Pof vanishing s
aling dimension and adjusting the 
oeÆ
ients so that it will be 
losedand parametrization independent.By a simple enumeration, the most general SO(3)-invariant P of vanishing s
alingdimension, whi
h furthermore s
ales as (3.11) for lo
ally 
onstant res
allings of theparameter s isP (X) = a1 1j _Xj2 ...X + a2 _X � ...Xj _Xj4 _X + a3 _X � �Xj _Xj4 �X + a4 j �Xj2j _Xj4 _X + a5 ( _X � �X)2j _Xj6 _X+ b1 1j _Xj3 _X � ...X + b2 _X � �Xj _Xj5 _X � �X: (3.12)Let f be an orientation preserving di�eomorphism of R. Simple appli
ations of the
hain rule of elementary 
al
ulus yield(X Æ f)0 = _f _X Æ f; (X Æ f)00 = �f _X Æ f + _f 2 �X Æ f;(X Æ f)000 = ...f _X Æ f + 3 �f _f �X Æ f + _f 3 ...X Æ f: (3.13)It is now an easy task to substitute the derivatives of X Æ f into (3.12) and to lookfor 
onstants a1�5, b1;2 for whi
h the equality (3.11) holds. The result is that thereare three linearly independent solutions:P 0(X) = �3 _X � �Xj _Xj5 _X � �X + 1j _Xj3 _X � ...X; (3.14)P 1(X) = 1j _Xj2 ...X � _X � ...Xj _Xj4 _X � 3 _X � �Xj _Xj4 �X � j �Xj2j _Xj4 _X + ( _X � �X)2j _Xj6 _X (3.15)P 2(X) = j �Xj2j _Xj4 _X � ( _X � �X)2j _Xj6 _X (3.16)26



P 0 is the polynomial that gives rise to 
0, and we just have to prove that no otherlinear 
ombination of P 0, P 1, and P 2 is 
losed. As P 0 is odd under a reversal of theorientation of the ambient R3 while P 1 and P 2 are even under su
h a reversal, we 
anrestri
t our attention to 
ombinations of the form 
1P 1 + 
2P 2. Let us pi
k su
h a
ombination P 
, and let us denote the 
orresponding 1-form on � by 

 = 
1
1+
2
2.To show that 

 is not 
losed, it is enough to �nd two ve
tor �elds !1;2 on � and apoint X 2 � for whi
h Æ

jX (!1; !2):Pi
k the point X 2 � to be the unit 
ir
le in the xy-plane with its naturalparametrization, and let the ve
tor �elds !1;2 be given in a small neighborhood ofX by two orthogonal se
tions of the normal bundle of X that `rotate' around X a
ertain number n of times | as shown in �gure 3.3. Let as now look for terms of

Figure 3.3. The 
ir
le X and two orthogonal in�nitesimal deformations thereofthat `rotate' around it n = 3 times. One of the ve
tor �elds is illustrated by fulllines and the other by dashed lines.order n3 in Æ

(!1; !2). AsÆ

(!1; !2) = ZS1 ds  ÆP 
Æ!1 � !2 � ÆP 
Æ!2 � !1! ;it is 
lear that su
h terms 
an 
ome only from the variations of terms in P 
 thatinvolve the third derivative of X. The �rst su
h term is 
1 ...X=j _Xj2, and its variationis 
1  !2 � ÆÆ!1 � !1 � ÆÆ!2! ...Xj _Xj2 = 
1j _Xj4 �2( _X � _!2)( ...X � !1)� 2( _X � _!1)( ...X � !2)+j _Xj2( ...!1 � !2 � ...!2 � !1)� :27



Remembering that j _Xj = 1 and that ...!1 � !2 = � ...!2 � !1 � (
onst)n3 6= 0, we see thatthe �rst term in P 
 gives a non-vanishing 
ontribution of order n3 to Æ

, proportionalto 
1. Similarly we 
an 
ompute (keeping only terms of order n3)
1  !2 � ÆÆ!1 � !1 � ÆÆ!2! _X � ...Xj _Xj4 _X � 
1 �( _X � ...!1)( _X � !2)� ( _X � ...!2)( _X � !1)� = 0using the orthogonality of _X and !1;2.Therefore, in order to have Æ

(!1; !2) = 0 we must have 
1 = 0, namely 

 =
2
2. Computations of exa
tly the same nature as the above now show that in orderto have no term proportional to n in Æ

(!1; !2) we must have 
2 = 0. 2Remark The above theorem and the results of the previous se
tion 
ombine intoa somewhat amusing property of the total torsion of a spa
e 
urve | it 
an berepresented as an integral of a lo
al quantity (3.10), but not in a 
anoni
al way ((3.10)depends on the non 
anoni
al 
hoi
e of n, and (3.9) is ill de�ned for some 
urves).Yet its variation Æ� = �Æ$s = �i
0=2 
an be represented 
anoni
ally as the integralof a lo
al quantity, and it is the only global quantity (of vanishing s
aling dimension)whose variation 
an be represented in a parametrization independent manner.Remark The only dire
t proof I know for the 
ru
ial equality Æ� = �i
0=2 isdes
ribed in the paragraph pro
eeding (3.10). This proof is very tedious and usesa 
omputer for some of the algebra involved. However, there are simple argumentsthat establish dire
tly that Æ� = �Æ$s (see e.g. [34℄). In se
tion 3.3 we saw thatÆ$s = i
0=2, and the last two fa
ts together 
onstitute a reasonably simple proof ofthe equality Æ� = �i
0=2.Remark In terms of the Frenet frame (T;N;B) (see [18℄), we haveP 0(X) = _�B � ��N:
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Chapter 4The two-loop 
ontribution
4.1 Statement of the problemLet X be a parametrized knot in R3. In this 
hapter we will try to understand thetwo-loop 
ontributionW2 toW(
at R3;X ) | the 
ontribution of order �4�2=k2. Allthe terms in the Lagrangian Ltot 
ome in to play now, and on a 
at R3 our W readsW(
at R3;X ) = Z DAD�D
D�
 trRPexp�Z ds _X i(s)Ai(X(s))� eiLtotwhereLtot = k4� ZR3 tr��ijkAi�jAk + 2��iAi + 13�ijkAi[Aj; Ak℄ + 2�
�i(�i
+ [Ai; 
℄)�If R is a unimodular1 representation, terms that have only one intera
tion pointwith X have a vanishing 
oeÆ
ient and therefore the only potential 
ontribution attwo-loops 
ome from the �ve diagrams in �gure 4.1.The �rst two diagrams are divergent be
ause of the integration over the lo
ationof the intera
tion verti
es in R3. But as is readily veri�ed and as was shown in [24℄the integrands in these diagrams are exa
tly the opposites of ea
h other so if we sumthem before integrating we get zero. (We will a

ept at fa
e value that A and B
an
el and prove that C +D +E is a topologi
al invariant. It is very likely that thefull story is a little more elaborate. In the 
ontext of a 
onsistent regularization that
ould be used to all orders, A and B are likely to 
an
el only up to an imaginarymultiple of the one loop 
ontribution and thus what is 
al
ulated here is just the realpart of the two-loop 
ontribution. See 
hapter 5 and [33, 2, 16℄). Also, it is 
lear thatif one ignores the Lie-algebra 
oeÆ
ients of diagrams C and D and the 
ombinatorial
oeÆ
ients S(C) and S(D) then their sum is equal to the square of the one-loop one-knot 
ontribution that was dis
ussed in the previous 
hapter. It is therefore possibleto subtra
t fromW2 a multiple of (W1)2 in su
h a way that diagram C will disappear.We will 
all the resulting quantity Ŵ2. The 
oeÆ
ient of diagramD in Ŵ2 will be the1Namely, a representation by linear operators of tra
e zero.29



ED

CBA

Figure 4.1. The �ve two-loop diagrams.di�eren
e between the 
oeÆ
ients of diagrams D and C in W2, and these 
oeÆ
ientsdi�er only be
ause the Lie-Algebra indi
es are 
ontra
ted in a slightly di�erent way.So if tab def= tr(GaGb), tab is the inverse matrix of tab and we use tab and tab to raise andlower Lie-algebra indi
es, we get2:C(D)� C(C) def= �Lie algebra 
on-tra
tions for D �� �Lie algebra 
on-tra
tions for C �= tbb0t

0R�b0ÆRÆ
0
R
b�R�
� � tbb0t

0R�
0ÆRÆb0
R
b�R�
� (4.1)The fa
t that R is a representation is just the relation �fab
R�a
 = tbb0t

0(R�b0ÆRÆ
0
 �R�
0ÆRÆb0
) and therefore (4:1) = �fab
R�a
R
b�R�
� def= �C(E):These are exa
tly the negatives of the Lie-algebra 
ontra
tions for diagram E. Takinginto a

ount the di�erent symmetry fa
tors for these diagrams we �nally get (afterdividing by the Lie algebrai
 
oeÆ
ient)~W2 def= 1C(E)Ŵ2 = �14 Z E(D) + 13 Z E(E):More expli
itly, if diagrams D and E are marked as in �gure 4.2, then ~W2 is givenby ~W2 = 116 Z�4ds1�4 _X i1 _Xj2 _Xk3 _X l4�ikm�jln (X1 �X3)mjX1 �X3j3 (X2 �X4)njX2 �X4j32The Lie-algebra 
omputation below is a parti
ular 
ase of the \STU" relation of 
hapter 9.30
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Figure 4.2. The two 
ontributing diagrams.� 148� Z�3ds1;2;3 ZR3 d3z _X i1 _Xj2 _Xk3 �i0j0k0�ii0i00�jj0j00�kk0k00(X1 � z)i00jX1 � zj3 (X2 � z)j00jX2 � zj3 (X3 � z)k00jX3 � zj3 ; (4.2)where Xi stands for X(si), i = 1; : : : ; 4.In the 
ase of G = SU(N) ; R = CN one 
an 
al
ulate3 that in W2 the Lie-algebrai
 
oeÆ
ients of diagrams C, D, and E are (N2�1)2N , 1�N2N , and N(N2 � 1)respe
tively, and therefore in this 
ase~W2 = 1N(N2 � 1) �W2 � 12N (W1)2� :Our aim in the rest of this 
hapter is to prove the following theorem:Theorem 2 Let X be a parametrized knot in R3. (that is to say, X is a smooth non-singular fun
tion from S1 to R3 that has no self interse
tions). Then the integralsrepresented by the diagrams D and E of �gure 4.2 are 
onvergent, and their sum ~W2is an isotopy invariant of the knot X. This invariant 
an be identi�ed to be ��2=6minus 4�2 times the se
ond non trivial 
oeÆ
ient of the Conway polynomial of X,whose redu
tion mod 2 is the well known Arf invariant of X.4.2 The �niteness of ~W2It still isn't 
lear that the integrals represented by the diagrams D and E are �nite.For diagramD there appears to be a singularity when three of the integration variablesare 
lose together but exa
tly the same analysis that has shown that the self-linkingintegral is �nite shows that this integral is also �nite. In diagram E there appears to3See 
hapter 9 for the details. 31



be a problem when two or three of the knot integration variables are 
lose togetherand are 
lose to z | the variable of the A3 vertex integration. Up to a 
onstantfa
tor, diagram E represents the integral:Z E(E) = Z�3ds1;2;3 _X i(s1) _Xj(s2) _Xk(s3)Vijk(X(s1); X(s2); X(s3)) (4.3)whereVijk(x1; x2; x3) def= �i0j0k0�ii0i00�jj0j00�kk0k00T i00j00k00(x1; x2; x3) def= 6ijki00j00k00T i00j00k00(x1; x2; x3)and T ijk(x1; x2; x3) def= ZR3 d3z (x1 � z)ijx1 � zj3 (x2 � z)jjx2 � zj3 (x3 � z)kjx3 � zj3The integral de�ning T is 
learly �nite for every 
hoi
e of distin
t x1�3 in R3, butit blows up rapidly when some of the x's 
oin
ide. To show that in spite of this theintegral (4.3) is �nite we need to understand the behavior of T as two or three of itsarguments 
oin
ide.4.2.1 A simpler expression for TLet us �rst rewrite T in a way that will make it easier to handle. Using43p� Z 10 e��2=3Nd� = 1N3=2we 
an rewrite T asT ijk = 6427�3=2 Z 10 d3� ZR3 dz(x1 � z)i(x2 � z)j(x3 � z)ke�P3m=1 �2=3m jxm�zj2:Introdu
ing the notation:A = X�2=3m ; �m = �2=3mAt = X�mxm ; s = X�mjxm � tj2we getT ijk(x1; x2; x3) = 6427�3=2 Z 10 d3� ZR3 dz(x1 � z)i(x2 � z)j(x3 � z)ke�A(jz�tj2+s)= 6427�3=2 Z 10 d3�e�As ZR3 dz(x1 � t� z)i(x2 � t� z)j(x3 � t� z)ke�Ajzj2:This is just a Gaussian integral with respe
t to z, and it 
an be evaluated to giveT ijk = 6427 Z 10 d3�e�AsA3=2 � 12A �(x1 � t)iÆjk + (x2 � t)jÆki + (x3 � t)kÆij�+ (x1 � t)i(x2 � t)j(x3 � t)k� :32



Changing variables from d3� to d2�dA (there are just two integrations over the �'s be-
ause they are 
onstrained to satisfy P�m = 1) we pi
k the Ja
obian 278 A7=2p�1�2�3and get (after evaluating the A integral)T ijk(x1; x2; x3) = 4 Z d2�q�1�2�3 "(x1 � t)iÆjk + (x2 � t)jÆki + (x3 � t)kÆijs2+4(x1 � t)i(x2 � t)j(x3 � t)ks3 # :(4.4)4.2.2 Bounding the possible divergen
eClearly the integral (4.3) is translation invariant, and invariant under reparametriza-tions of X of the form s! s+ s0. So in the investigation of its possible divergen
ieswe 
an assume that, say, 0 is the midpoint between s2 and s3, s1 is farther away froms2 or s3 than the distan
e between these two:s1 = � ; s2 = ��� ; s3 = �� ; j�j < 13 ;and that X(0) = 0. In this 
ase we 
an writeT ijk(X� ; X��� ; X�� ) = 4 Z d2�q�1�2�3 "Sijk1s2 + 4Sijk2s3 # (4.5)with Sijk1 def= (X� � t)iÆjk + (X��� � t)jÆki + (X�� � t)kÆij;Sijk2 def= (X� � t)i(X��� � t)j(X�� � t)k:The problemati
 regions are when � or � are small, and we need to be able to estimateintegrals like those in (4.5) for su
h values of � and � .Lemma 4.2.1 Let A, B, and C be the three verti
es of a triangle with sides jA�Bj �jA�Cj � � , and jB�Cj � �� with � < 1=3 (see �gure 4.3). For positive �'s satisfying�1 + �2 + �3 = 1 de�ne:t = �1A + �2B + �3Cs = �1jA� tj2 + �2jB � tj2 + �3jC � tj2Finally let �A be one of f(1� �1); �2; �3g, �B be one of f�1; (1� �2); �3g, and �Cbe one of f�1; �2; (1� �3)g.In this situation there exists 
onstants 
1�5 independent of � and � for whi
h:Z d2�q�1�2�3 � 1s2 � < 
1�� 4 (4.6)33
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1Figure 4.3. The triangle ABC.Z d2�q�1�2�3 "�1s2 # < 
2� 4 (4.7)
Z d2�q�1�2�3 ��A�B�Cs3 � <

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

3�3� 6 if neither of �B or �C is
hosen to be �1,
4�� 6 if exa
tly one of �B, �C is
hosen to be �1,
5� 6 if both of �B and �C are
hosen to be �1. (4.8)

Proof We will write �2 = (1 � �1)� and �3 = (1 � �1)�� where 0 � � � 1 and�� = 1��. 
 will denote a positive 
onstant that is allowed to 
hange from line to line.It is easy to read from the geometry of �gure 4.3 that when �1 < 1=2, (equivalently,when t is in the left portion of �gure 4.3)sj�1< 12 > 
 ����2jB � Cj2 + ���2jB � Cj2 + �1� 2� > 
� 2 �����2 + �1� : (4.9)Also, it is 
lear that the major 
ontribution to (4.6), (4.7), and (4.8) 
omes from thatregion when �1 < 1=2, and therefore (4.9) 
an be used to give upper bounds for theintegrals we are 
onsidering.Taking for example (4.8) with �A = (1� �1), �B = (1� �2), and �C = (1� �3)we get Z d2�q�1�2�3 ��A�B�Cs3 � < 
 Z 10 d� Z 120 d�1q�1���(�1 + ���)� 6 �����2 + �1�3 : (4.10)
34



The �1 integral 
an be expli
itly evaluated. In fa
t, for a small � one hasZ a0 d� p�(�2 + �)3 = �pa2(a+ �2)2 + pa4�2 (a + �2) + ar
tan(pa� )4�3 < 
�3and Z a0 d� p��(�2 + �)3 = pa�22(a+ �2)2 � 5pa4 (a+ �2) + 3 ar
tan(pa� )4� < 
�and plugging these two estimates into (4.10) gives the required result. The otherassertions of the lemma are proved along the same lines. 24.2.3 Proof of the �niteness of diagram EIt is suÆ
ient to show that T ijk(X� ; X��� ; X�� ) < 
=�: (4.11)Let us �rst deal with the 
ontribution 
oming from Sijk1 . Expanding Sijk1 in powersof �1, Sijk1 = S0;ijk1 + �1S1;ijk1 (4.12)we 
an use (4.6) and (4.7) and then all that is left to prove is:6ijki0j0k0 _X i0(�) _Xj0(���) _Xk0(��)Sp;ijk1 = O(�1�p� 3) ; p = 0; 1: (4.13)This 
an be done by expanding all the terms in the above expressions on
e in powersof � and on
e in powers of � and showing that the low order 
oeÆ
ients in ea
h ofthese expansions are zero. It is not hard to do it by hand, but as we are going toen
ounter some very similar but a bit harder expansions later on we will not do ithere but postpone it to the appendix where it will be shown how all these expansions
an be 
arried out in a uniform way using a 
omputer.The terms involving Sijk2 are dealt with in a very similar way. Clearly, ea
h of thefa
tors of Sijk2 is made of three summands, whose 
oeÆ
ients exa
tly 
orrespond tothe various possibilities for 
hoosing �A, �B, and �C in the lemma 4.2.1. Keeping(X� � t)i unexpanded and expanding only the last two fa
tors of Sijk2 in powers of �1,Sijk2 = S0;ijk2 + �1S1;ijk2 + �21S2;ijk2 ; (4.14)and keeping in mind (4.8) what is left to prove is
6ijki0j0k0 _X i0(�) _Xj0(���) _Xk0(��)Sp;ijk2 =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
O(�3� 5) for p = 0;O(�� 5) for p = 1;O(� 5) for p = 2: (4.15)
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Again, the relevant expansions will be shown to vanish to the required order in theappendix using a 
omputer.4.3 The invarian
e of ~W24.3.1 The regularized ~W2We will now show that ~W2 is indeed a knot invariant | that it is not 
hangedunder in�nitesimal deformations. The proof presented here should be similar in spiritto invarian
e proofs (that are yet to be found) of higher terms in the perturbativeexpansion | we will �rst write a diagrammati
 argument, and then supplement itwith the required analyti
al details. As in the 
ase of the analysis of the variationof the self linking number in the previous 
hapter, in analyzing the variation of ~W2we will need take derivatives of Vijk and of Vij near the diagonal where there aresingularities whi
h will prevent a straight-forward invarian
e proof. To avoid thesesingular points de�ne ~W2;� to be given by the same integrals R E(D) and R E(E) as~W2, only with the integration domain restri
ted by the 
ondition that the s's wouldbe at least � apart | for i 6= j we requirejsi � sjj > �: (4.16)We will denote these integrals by D� and E�, and the �niteness of ~W2 that was provenabove just means~W2;� = �14D� + 13E�����!�! 0 � 14 Z E(D) + 13 Z E(E) = ~W2: (4.17)4.3.2 The variation of ~W2We will now vary D� and E� under an in�nitesimal deformation of X given by X !X+!. It will be a lot more instru
tive to perform those 
al
ulations diagrammati
allyinstead of working with the expli
it formulae given for D and E in (4.2). First, letus vary D�. When X moves to X + ! it swaps an in�nitesimal surfa
e S, and ourquantity of interest ÆD� is given by the evaluation of dLV on S whi
h after usingthe key relation (3.2) redu
es to diagrams D3 and D4 and by two boundary terms,diagrams D1 and D2:
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D2

-

D1

=

D
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SS

+ = 4(D1-D2)+

4 4

S

-

= 4(D1-D2) + -

S

-

D3 D4

In these diagrams a dashed line represents as before the gauge propagator Vijevaluated between the two ve
tors marked at its ends, a dotted represents the (2; 0)-form F , a d symbol stands for exterior di�erentiation applied to the nearby end ofthe nearby propagator, and an � between two intera
tion points on the knot meansthat these points are exa
tly � apart.Similarly we 
an vary E�:
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X X X X

d

d
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XXXX

+

S

= 3(E1-E2) +

SE’

3

XX

+

SE3
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The diagram E3 appears be
ause (3.2) is true only o� diagonal. A
tually dLVand �dRF di�er by a ?L of a Æ-fun
tion as was shown in the derivation of (3.2).Integrating by parts and using Leibnitz's rule we get:
+-

dd
d

SS

=

XX

SE’

X X X X

+-

d
XX

XXXX

= -

S S SE4 E5

d

S

X
XX

+

S

= - E4 + E5 -

E6

-

XXX

E7 E8 E9S
-

+ + -

S
-

S

-4.3.3 The invarian
e proofTo show that ~W2 is indeed an invariant we �rst need to show that the limit as �! 0of Æ(�14D� + 13E�) vanishes. That is, we need to show thatlim�!0 �D1 +D2�D3 +D4 + E1� E2 + E3� E4 + E5� E6 + E7 + E8� E9 = 0:38



In fa
t, we will show that lim�!0 �D1 +D2 + E3 = 0; (4.18)lim�!0 �D3 +D4� E4 + E5 = 0; (4.19)and lim�!0 E1� E2� E6 + E7 + E8� E9 = 0; (4.20)independently. For 
onvenien
e, the symbol R� will denote integration in whi
h theintegration variables are 
onstrained to satisfy the restri
tions (4.16), we will writeX� for X(s�), and similarly for _X�, �X� and !�.Proof of (4.18) Diagram D1 represents the integral�D1 = � Z� ds1�3!i3 _Xk4Vij(X3; X1) _Xj1Vkl(X4; X2) _X l2 ; s4 = s3 + �; (4.21)diagram D2 readsD2 = Z� ds1�3 _X i3!k4Vij(X3; X1) _Xj1Vkl(X4; X2) _X l2 ; s4 = s3 + �; (4.22)and diagram E3 is given byE3 = � Z� ds1�3 _Xp3!n3 �pnm�mikVij(X3; X1) _Xj1Vkl(X3; X2) _X l2: (4.23)Using �pnm�mik = ÆipÆkn � ÆkpÆinwe 
an write E3 = E30 + E300 withE30 = � Z� ds1�3 _X i3!k3Vij(X3; X1) _Xj1Vkl(X3; X2) _X l2: (4.24)and E300 = Z� ds1�3 _Xk3!i3Vij(X3; X1) _Xj1Vkl(X3; X2) _X l2:: (4.25)The nearness of s3 and s4 
learly implies that the integrand in (4.21) 
onverges to theintegrand of (4.25) and the integrand in (4.22) 
onverges to the integrand of (4.24) as�! 0. At the region where s1 and s2 are farther from s3;4 than some �xed but smallpositive 
onstant T , there is no problem with 
ommuting integration with taking the� ! 0 limit. Con
entrating �rst on 
omparing diagrams D1 and E300 we see thatnothing parti
ularly harmful happens if just js4 � s2j is small | as it was shown in
hapter 3 the integrand in this 
ase remains �nite. Otherwise, we are looking at oneof the following ex
eptional 
ases (assuming for simpli
ity that s4 = 0, s3 = ��, andX4 = 0):Case 1: Disregarding the propagator 
onne
ting X2 and X4 = 0 the di�eren
e�D1 + E300 reads:Z T� ds1det �!(��) ��� _X1���X(��)�X1�jX(��)�X1j3 � Z T� ds1det �!(0) ��� _X1���X(0)�X1�jX(0)�X1j3 : (4.26)39
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Case 2:

Case 1:

D1 E3’’
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Figure 4.4. The two ex
eptional 
ases for D1$ E300.Expanding the integrands in (4.26) in powers of s1 we 
an ignore all terms of ordersmaller than 1=s1 | evaluating the integrals in (4.26) for these terms would give aresult bounded by a 
onstant multiple of T in the �! 0 limit, and as T was 
hosensmall we 
an indeed ignore the 
ontribution to (4.26) 
oming from these terms. Thereare no terms of order higher than 1=s1 in (4.26) and the term of order 1=s1 reads:Z T� ds10� 12(s1 + �) det �!(��) ��� _X(��)��� �X(��)�j _X(��)j3 � 12s1 det �!(0) ��� _X(0)��� �X(0)�j _X(0)j3 1Aat the �! 0 limit we get� det �!(0) ��� _X(0)��� �X(0)�2j _X(0)j3 Z T� ds1 � 1s1 + � � 1s1�! �det �!(0) ��� _X(0)��� �X(0)� log 22j _X(0)j3 :(4.27)Reinstalling the propagator 
onne
ting X2 and X4 and the integration over s2 we getthe only non-vanishing 
ontribution to �D1 + E300.Case 2: Here the �! 0 limit is in fa
t zero. To see that, one does analysis similar tothe previous 
ase, and noti
es that s2 is integrated over an interval of length smallerthan s1 and thus remembering that the propagator 
onne
ting X2 and X4 is �niteeven near the diagonal the s2 integral is � s1, and this additional fa
tor is suÆ
ientto make the 
ontribution 
oming from this 
ase vanish.A similar analysis to the above shows that the only non-vanishing 
ontributionto D2 � E30 
omes from the 
ase parallel to 
ase 1 here, and that, in fa
t, these
ontributions exa
tly 
an
el. 40



2Proof of (4.19) Here are the integrals 
orresponding to the relevant diagrams:�D3 = � Z� ds1�3 _Xk4Vlk(X2; X4) _X l2 _X i1!j1Fij;�(X1; X3); ; s4 = s3 + �;(4.28)D4 = Z� ds1�3 _Xk3Vkl(X3; X1) _X l1 _X i2!j2Fij;�(X2; X4); ; s4 = s3 + �; (4.29)�E4 = 12 Z� ds1�3 _Xk3 �kmn�mnpVpl(X3; X1) _X l1Fij;�(X2; X3) _X i2!j2; (4.30)E5 = �12 Z� ds1�3 _Xk3 �kmn�mnpVpl(X3; X2) _X l2Fij;�(X1; X3) _X i1!j1: (4.31)Using �kmn�mnp = 2Æ pkand the nearness of s3 and s4 it is 
lear that so long as X1 and X2 are far away fromX3 the integrands of (4.28) and of (4.29) 
onverge to the integrands of (4.31) and of(4.30) respe
tively, and that there is no problem with 
ommuting integration withtaking the �! 0 limit. The 
ases when X1 and X2 are not far away from X3 
an betreated in the same way as in the previous proof. 2Proof of (4.20) It will be 
onvenient here to repla
e � by 2� and then take the �! 0limit. In all of the relevant diagrams two of the s's are 
onstrained to be exa
tly 2�apart and the third to be farther then 2� from any of the previous two. It is harmlessto assume that s2 = ��, s3 = �, X(0) = 0, and s1 = � with j� j > 3�. We will denotethe ratio �=� by �.With these notations one 
an see that the integrands 
orresponding to our dia-grams 
an be written in pairs as follows: (ignoring the overall 
oeÆ
ient �1=16�)E1� E2 = X�=� 6ijki0j0k0 _X i0� !j0���� _Xk0���T ijk(X� ; X���� ; X��� )�E6� E9 = X�=� �mni�ljk _Xm� !n� _X l���T ijk(X� ; X���� ; X��� )E7 + E8 = X�=� �mnj�lki _Xm����!n���� _X l�T ijk(X� ; X���� ; X��� ):Remembering (4.5), (4.12), (4.14), and lemma 5.1 we see that in 
onsidering the�! 0 limit we just need to show thatlim�!0 Zj� j>T d��a� b X�=� �6ijki0j0k0 _X i0� !j0���� _Xk0���+�mni�ljk _Xm� !n� _X l���+�mnj�lki _Xm����!n���� _X l��Sp;ijkq = 0:(4.32)and that lim�!0 Z3�<j� j<T (same)�a� b d� = O(T ) (4.33)41



where T is some �xed small positive number and a and b are the exponents of � and� as in equations (4.6), (4.7), and (4.8).As in (4.32) � is bounded from below we 
an use � = �� to repla
e the limit thereby an � ! 0 limit and then all that is required is to show that the summand there is� �a+1. The relevant algebra will be 
arried out in the appendix using a 
omputer.The integration domain in (4.33) is symmetri
 and therefore we 
an repla
e theintegration there with an integration over 3� < � < T , repla
ing the integrand withX� = �� = � �6ijki0j0k0 _X i0��!j0���� _Xk0��� + �mni�ljk _Xm��!n�� _X l��� (4.34)+ �mnj�lki _Xm����!n���� _X l��� Sijk1;2 ����!�� :Simply integrating over � now shows that to 
on
lude the invarian
e proof we justneed to show that (4:34) = O(�a� b). Again, the relevant algebra will be 
arried outin the appendix using a 
omputer. 2Con
lusion of the invarian
e proof What we've shown so far is thatlim�!0 Æ ~W2;� = 0 (4.35)but what we need is Æ �lim�!0 ~W2;�� = 0:Namely, we need to know that we 
an \
ommute" the � ! 0 limit with taking thevariation Æ=Æ!. This follows from the following fa
t:Fa
t If X(t) :! R3; t 2 [�1; 1℄ is a smooth family of parametrized knots, then the
onvergen
es in (4.17) and in (4.35) are uniform in t.To prove this fa
t simply observe that all the estimates in se
tion 4.2 and in thisse
tion were, in fa
t, uniform for families of parametrized knots having a uniformupper bound on their �rst, se
ond and third derivatives, a uniform lower boundon their �rst derivative, and a uniform lower bound on their distan
e from \self-interse
ting". 24.4 Identifying ~W2The last assertion of theorem 2 is that the invariant ~W2 that we have produ
edis essentially the se
ond non-zero 
oeÆ
ient in the Conway polynomial of X. TheConway polynomial is de�ned by its behavior under 
ipping a 
rossing in a planarproje
tion, so we will try to understand how ~W2 
hanges under su
h a 
ip.Very brie
y, it is 
lear that the di�eren
e in the value of ~W2 before and after a
ip 
omes from a singularity in either of Vijk or Vij at the point where the 
ip o

urs.Using the invarian
e that we have just proven one 
an `straighten' the knot near a42
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Figure 4.5. The 
hange in ~W2 under a 
ip.
rossing point before 
ipping, and then it is easy to 
he
k in this 
ase Vijk 
ontra
tedwith the tangents of the knot in fa
t vanishes near the 
rossing point ex
ept if one ofits arguments is on the upper bran
h of the 
rossing and the other is on the lower.Vijk is then inversely proportional to the distan
e between its two arguments, andthe fa
t that 1=r is integrable on R2 shows that this singularity 
an be negle
ted.Similarly 
onsidering diagram D one �nds that the only singularity that remains isthe one that o

urs when the two arguments of the same propagator are arranged aspropagator 1 in �gure 4.5, and the other propagator 
an then be assumed to be awayfrom the 
rossing. Repeating (3.4) for propagator 1 and then integrating over thelo
ation of the other propagator, marked 2 in the �gure, it is 
lear that e�e
tively weare 
al
ulating the linking number of the two knots that are 
reated if the originalknot is 
ut at the 
rossing as in the �gure. It is easy to 
he
k from the de�nitions (see[31℄) that this is exa
tly the same relation as the one that is satis�ed by the se
ondnon-zero 
oeÆ
ient in the Conway polynomial of X, and so they 
oin
ide up to a
onstant shift. This 
onstant shift is given by ~W2(unknotted 
ir
le). By invarian
ewe 
an just 
al
ulate ~W2(the unit 
ir
le in the XY plane) and an expli
it 
al
ulationshows (see [25℄) that~W2(the unit 
ir
le in the XY plane) = ��26 :This 
on
ludes the proof of theorem 2.4.5 Appendix: Some algebraWe in
lude here the short 
omputer routine that veri�es few assertions that weremade in se
tions 4 and 4.3. First, the routine itself. It is written in Mathemati
aTM| a symboli
 mathemati
s language. For more information about this language see[48℄.X[mu_℄ := {X1[mu℄,X2[mu℄,X3[mu℄} ; Xd[mu_℄ := D[X[nu℄,nu℄ /. nu -> mu43



X1[0℄=X2[0℄=X3[0℄=0 ; w[mu_℄ := {w1[mu℄, w2[mu℄, w3[mu℄}ser[expr_℄ := Series[#,{var,0,ord}℄& /� exprXdtau = ser[Xd[a tau℄℄ ; wtau = ser[w[a tau℄℄Xdeps = ser[Xd[b eta tau℄℄ ; weps = ser[w[b eta tau℄℄Xdnegeps = ser[Xd[-b eta tau℄℄ ; wnegeps = ser[w[-b eta tau℄℄t = lambda1 X[a tau℄ + lambda2 X[-b eta tau℄ + lambda3 X[b eta tau℄z1 = X[a tau℄ - t ; z2 = X[-b eta tau℄ - t ; z3 = X[b eta tau℄ - tdelta = IdentityMatrix[3℄S=Table[ser[Whi
h[var==eta,{(z1[[i℄℄delta[[j,k℄℄+z2[[j℄℄delta[[k,i℄℄+z3[[k℄℄delta[[i,j℄℄)/. lambda1 -> 
2 eta ,z1[[i℄℄ (Expand[z2[[j℄℄z3[[k℄℄℄/. {lambda1^2 -> 
5 eta^3 , lambda1 -> 
4 eta^2})/eta^2},var==tau,{(z1[[i℄℄delta[[j,k℄℄+z2[[j℄℄delta[[k,i℄℄+z3[[k℄℄delta[[i,j℄℄)/tau, z1[[i℄℄z2[[j℄℄z3[[k℄℄/tau^3}℄℄,{i,3},{j,3},{k,3}℄sign = (Signature /� (perm = Permutations[{1,2,3}℄))eps[f_℄:=Sum[sign[[p℄℄sign[[q℄℄(f��Join[perm[[p℄℄,perm[[q℄℄℄),{p,6},{q,6}℄six[f_℄:=eps[f[#3,#1,#4,#6,#2,#5℄&℄ + eps[f[#6,#1,#4,#2,#3,#5℄&℄e[type_℄ :=six[S[[#1,#2,#3,type℄℄Xdtau[[#4℄℄Xdnegeps[[#5℄℄Xdeps[[#6℄℄&℄ /. b->1e12[type_℄:=six[S[[#1,#2,#3,type℄℄Xdtau[[#4℄℄wnegeps[[#5℄℄Xdeps[[#6℄℄&℄e69[type_℄:=eps[S[[#3,#5,#6,type℄℄wtau[[#1℄℄Xdtau[[#2℄℄Xdeps[[#4℄℄&℄e78[type_℄:=eps[S[[#6,#3,#5,type℄℄Xdnegeps[[#1℄℄wnegeps[[#2℄℄Xdtau[[#4℄℄&℄de[type_℄ :=Sum[e12[type℄ + e69[type℄ + e78[type℄ , {b,-1,1,2}℄The �rst paragraph of the routine de�nes X, _X, !, and their expansions withrespe
t to the externally de�ned variable var to order ord at the points �� , �� =���� , and � = ��� .The se
ond paragraph de�nes S[[i,j,k,1 or 2℄℄ to be Sijk1 or 2 expanded with re-spe
t to the relevant variable. S is de�ned di�erently for var=eta then for var=tau| if var=eta then (4.6) and (4.7) mean that in S1 one 
an make the repla
ementlambda1 -> 
2 eta while (4.8) means that in S2 the repla
ement {lambda1^2 ->
5 eta^3 , lambda1 -> 
4 eta^2} 
an be made. It is easy to see that after the latterrepla
ement has been made the expansion for S2 will begin at �2, and this justi�esdividing it by �2 and expanding everything to an order two less than is mentioned inse
tions 4 and 4.3. If var=tau the expansions for z1, z2, and z3 begin at � , and thusthe de�nitions S[[i,j,k,1℄℄= Sijk1 =� and S[[i,j,k,2℄℄= Sijk2 =� 3. This allows us toexpand S[[i,j,k,1℄℄ (S[[i,j,k,2℄℄) to an order lower by one (three) than the orderrequired for Sijk1 (Sijk2 ).The third paragraph 
ontains the routines that do the ���� and the 6������ 
ontra
tions,and the last paragraph de�nes the relevant diagrams.We now in
lude a Mathemati
aTM session produ
ed using the above routine, for44



whi
h I have 
hosen the not very imaginative name \�le".Mathemati
a (sun4) 1.2 (November 6, 1989) [With pre-loaded data℄by S. Wolfram, D. Grayson, R. Maeder, H. Cejtin,S. Omohundro, D. Ballman and J. Keiperwith I. Rivin and D. WithoffCopyright 1988,1989 Wolfram Resear
h In
.In[1℄:= var=eta; ord=1; << fileIn[2℄:= {e[1℄ , e[2℄} /. {a->1 , eta->0}Out[2℄= {0, 0}In[3℄:= {de[1℄ , de[2℄} /. a->12 2Out[3℄= {O[eta℄ , O[eta℄ }In[4℄:= var=tau; ord=1; << fileIn[5℄:= {Sum[e[1℄,{a,-1,1,2}℄ , Sum[e[2℄,{a,-1,1,2}℄}2 2Out[5℄= {O[tau℄ , O[tau℄ }In[6℄:= var=tau; ord=2; << fileIn[7℄:= {Sum[de[1℄,{a,-1,1,2}℄ , Sum[de[2℄,{a,-1,1,2}℄}3 3Out[7℄= {O[tau℄ , O[tau℄ }Out[2℄ and Out[5℄ prove equations (4.13) and (4.15), while Out[3℄ and Out[5℄prove the assertions at the end of the invarian
e proof in se
tion 4.3. This 
on
ludesthe proof of the main theorem of this paper.Remark Obtaining these eight expansions takes few hours of CPU time on a 1989workstation.
45



Chapter 5The stationary phaseapproximationThe purpose of this 
hapter1 is to 
ompute and examine the 
onsequen
es of thestationary phase approximation of se
tion 1.2.2. In [42℄ Witten has 
al
ulated thestationary phase approximation for the Chern-Simons path integral, �nding that thee�e
tive 
oupling 
onstant is shifted by half the Casimir number2 
2(G) of the adjointrepresentation of the underlying group relative to the bare 
oupling 
onstant k. His
al
ulation was restri
ted to 
ompa
t simple gauge groups, and one of the purposesof this 
hapter is to examine the (somewhat di�erent) 
ase of non-
ompa
t simplegroups. The results of this 
hapter were obtained jointly with E. Witten, and are allin
luded (in a somewhat di�erent format) in [7℄.5.1 Introdu
tionRe
all from se
tion 1.3.3 that the quadrati
 part of the gauge �xed Chern-SimonsLagrangian is given byk 
s(A0) + k4� ZM3 tr �A ^DA0A+ 2�DA0i Ai + 2�
DA0i DA0;i
� (5.1)where DA0 denotes 
ovariant di�erentiation with respe
t to a ba
kground 
at 
on-ne
tion A0. If the gauge group G is simple and 
ompa
t, then the inner produ
th'1; '2i = � ZM3 pgtr('1'2) (5.2)1A
tually, in the logi
al order of things, this 
hapter deserves to appear before 
hapters 3 and 4.However, due to its less 
omplete and less rigorous nature I've de
ided to pla
e it after those tworigorous se
tions.2The Casimir number 
2(R) of a representation R of a simple Lie algebra G relative to somepre-
hosen invariant bilinear form tr on G is the ratio trR=tr. Namely, 
2(R) is the 
onstant for whi
htrRR(Ga)R(Gb) = 
2(R)trGaGb for every Ga;b 2 G.46



is positive de�nite3, and we 
an rewrite (5.1) ask 
s(A0)� k4� * A� ! ; LA0�  A� !++ k2� D�
;�A0
Ewhere �A0 is the 
ovariant Lapla
ian and LA0� is de�ned as in se
tion 3.1:LA0� = (DA0 ?+ ? DA0)J ; JA = AJ� = �� :repeating the same4 analysis as in se
tion 1.2.2, we thus �nd that to lowest order in1=k, W(M3; k) � X
at A0 det�A0r���detLA0� ���e�i�4 signLA0� eik 
s(A0):(Here we have ignored an A0-independent in�nite power of 4�k).The problem with the above formula is that as it stands, det�A0 , detLA0� , andsignLA0� are all meaningless due to the in�nite dimensionality of the spa
es involved.A way around this was found by Ray and Singer [37℄ | they show when L is a suitableoperator, the sum �(L; s) = Xeigenvalues � of L��s
onverges for Re(s) large enough, that the resulting �-fun
tion has a meromorphi

ontinuation on the entire s plane, and that it is analyti
 at s = 0. Finally, theyde�ne detL = e��0(L) def= e��0(L;0):Clearly, this de�nition agrees with the usual de�nition of the determinant in the �nitedimensional 
ase.Similarly, one 
an de�ne (following Atiyah, Patodi, and Singer [5℄)�(L; s) = Xeigenvalues � of L��ssign�for Re(s) large enough, analyti
ally 
ontinue to s = 0, and setsignL = �(L) def= �(L; 0):With these de�nitions, we 
an setWregularized0 = X
at A0 exp�14� 0 ��LA0� �2�� � 0 ��A0�� exp�i�4 � �LA0� � exp ik 
s(A0):(5.3)3Here we have restri
ted our 
hoi
e of tr a bit further. Not only do we require that it will beinvariant, namely a multiple of the Killing form, but we also insist that it will be a positive multipleof the negative de�nite Killing form.4But remembering that for Fermioni
 Gaussian integrals R d�
d
 e�
J
 / det(J) as in (1.13).47



In the pro
ess of de�ning Wregularized0 we were for
ed to introdu
e a metri
 on M3,and it is now not 
lear that our de�nition is independent of the 
hoi
e of that metri
.Part of the answer was already given by Ray and Singer in [37℄ | they proved thatthe ratio of determinants exp�14� 0 ��LA0� �2�� � 0 ��A0��is, in fa
t, metri
 independent5.The signature �(LA0� ) turns out to be tri
kier. We will see in the next se
tionthat for an arbitrary 
onne
tion A (not ne
essarily 
at), the variation of �(LA�) withrespe
t to A is given by Æ� �LA�� = �
2(G)�2 ZM3 tr ÆA ^ FA0: (5.4)This implies6 � �LA0� �� � �L0�� = �2
2(G)� 
s(A0);where L0� is the standard L� operator (d ? + ? d)J twisted by the zero 
onne
tion.Therefore, the \se
ond half" of (5.3) 
an be rewritten asexp i�4 � �LA0� � exp ik 
s(A0) = exp�i� dimG4 �(L�) exp i(k + 
2(G)=2)
s(A0): (5.5)The shift k ! k + 
2(G)=2 in the above formula is exa
tly the famous \shift in k" ofChern-Simons theories.We still have to analyze themetri
 dependan
e ofWregularized0 | namely, the metri
dependan
e of �(L�). Here we 
an appeal again to the Atiyah-Patodi-Singer theorem,whi
h, in this 
ase, says thatÆ�(L�)Æg = 112�2 ZM3 trÆ!gÆg ^ Rg = Æ
s(!g)6�Æg ; (5.6)where Rg is the 
urvature of the Levi-Civita 
onne
tion !g of g. The situation now issimilar to that of se
tion 3.4 | Wregularized0 is not invariant, but it 
an be `
orre
ted'to give an invariant Wrenormalized0 def= Wregularized0 eidimG24 
s(!g)at the 
ost of having to frame M3 | to 
hoose a homotopy 
lass of trivializations ofthe tangent bundle of M3 | so that 
s(!g) 
an be de�ned unambiguously.5They have also 
onje
tured that that ratio is equal to the square root of the Reidemeister-Franztorsion of M3 with 
oeÆ
ients in the representation of �1(M3) determined by A0. This 
onje
turewas later proven by Cheeger [15℄ and M�uller [32℄ independently.6This result 
an be dedu
ed dire
tly from the Atiyah-Patodi-Singer theorem [5℄.48



5.2 The variation of � in the 
ompa
t 
aseAs a warm-up for the more 
hallenging 
ase of a non-
ompa
t group, in this se
tionwe will prove formula (5.4). For simpli
ity we will perform all our 
omputations ona 
at R3. A more 
omplete treatment 
an be found in [7℄.The �rst step is to rewrite LA�:LA� = �i  ��xi + Ai! :Here �1, �2, �3 are the matri
es representing multipli
ation by the quaternions i, j, krespe
tively on the four dimensional real ve
tor spa
e V underlying the quaternionsH:�1 = 0BBB� 0 �1 0 01 0 0 00 0 0 �10 0 1 0 1CCCA ; �2 = 0BBB� 0 0 �1 00 0 0 11 0 0 00 �1 0 0 1CCCA ; �3 = 0BBB� 0 0 0 �10 0 �1 00 1 0 01 0 0 0 1CCCA :This di�erential operator a
ts on V 
G-valued fun
tions on R3. The f�ig's satisfythe following 
ommutation relations:f�i; �jg = �2Æij (5.7)[�i; �j℄ = 2�ijk�k: (5.8)We will attempt to 
al
ulate �(LA�) using a result derived in [1℄ and in [11℄, andreviewed in [7℄:Theorem 3 The variation of the �-invariant �(D) of a di�erential operator D a
tingon a three dimensional spa
e is given byÆ[�(D)℄ = �2C�1=2p�where the form C�1=2 is related to the asymptoti
 expansion of the heat kernel of D2by7 Tr(ÆD exp�tD2) = C�3=2t3=2 + C�1t + C�1=2t1=2 + � � �If D2 = �(� + F ) and the operator F 
an be 
onsidered as `small' relative to �,one 
an determine the 
oeÆ
ients C�m=2 usingDx ���et(�+F )��� yE � Dx ���et���� yE+ Z t0 ds Dx ���es�Fe(t�s)���� yE+ � � �7The T of Tr in the formula below is 
apitalized to emphasize the in�nite dimensionality of thespa
e involved. 49



To apply theorem 3, we �rst need to 
al
ulate (LA�)2:(LA�)2 = �i�j(�i + Ai)(�j + Aj) = �i�j�i�j + �i�j�i Æ Aj + �i�jAi�j + �i�jAiAjusing Leibnitz' rule= �i�j�i�j + �i�j(�iAj) + (�i�j + �j�i)Ai�j + �i�jAiAjAnd repla
ing ea
h �i�j by 12 (f�i; �jg+ [�i; �j℄) = �Æij + �ijk�k we get= ��� (�iAi) + �ijk�k(�iAj)� 2Ai�i � AiAi + �ijk�kAiAj:Now, a

ording to theorem 3 the variation of �(LA�) under LA� ! LA+ÆA� , that isto say, under �l  ��xl + Al!! �l  ��xl + Al + ÆAl!is given by �C�1=2p� where C�1=2 is given by:C�1=2t1=2 = Z tr �lÆAl Z t0 ds Dx ���es�Fe(t�s)���� xE ;and where F is given by:F = (�iAi)� �ijk�k(�iAj) + 2Ai�i + AiAi � �ijk�kAiAj:There is now no need to 
al
ulate | it is 
lear that astr �l = 0 ; tr �l�k = �4Ælkwe will haveC�1=2t1=2 = Z 4tr ÆAl (�ijl(�iAj) + �ijlAiAj) Z t0 ds Dx ���es�e(t�s)����xE(The expressions �iAj and AiAj 
an be assumed to be independent of x | it easy isto see that their possible dependen
e would have anyway lead to lower order 
ontri-butions). Using now the 
onvolution property of the heat kernel we �nd thatC�1=2 = 12�p� Z tr �ijlÆAl (�iAj + AiAj) = 
2(G)2�p� Z tr�ijlÆAl (�iAj + AiAj)proving formula (5.4).Remark. It is 
lear from the above 
al
ulations that when we 
al
ulated (LA�)2 we
ould have ignored every term that has no � matrix in it | be
ause those terms whenmultiplied by �lÆAl end up having exa
tly one � in them, and thus end up havingzero tra
e. In fa
t, one of those terms, Ai�i, gives a vanishing 
ontribution to the endresult for another reason as well. Let us try to 
al
ulate the 
ontribution due to it:Z tr �lÆAl Z t0 ds Dx ���es�Ai�ie(t�s)���� xE50



Again the dependen
e of A in x 
an be ignored as it leads only to lower order 
ontri-butions, and we see that we �rst have to evaluateAi Dx ���es��ie(t�s)���� xE :We 
an now use the fa
t that the integral kernel for the solution of the heat equationis a symmetri
 fun
tion of x and y to repla
e the above expression with:Ai ��yi Dx ���es�e(t�s)���� yE�����y=x :Using the semigroup property of the heat kernel we getAi ��yi Dx ���et���� yE�����y=x = Ai(4�t)3=2 ��yi �x ����e� (x�y)24t ���� y������y=x = 0:Clearly, a similar 
al
ulation will show that even if F had any other terms whi
hare �rst order di�erential operators those would have added no further 
ontributionsto Æ�(LA�).5.3 The variation of � in the non-
ompa
t 
aseIf the gauge group G is simple but not 
ompa
t, then the inner produ
t (5.2) is notpositive de�nite, and the analysis of (1.5) breaks down. The reason for that is that inse
tion 1.2.2 the phase of the integral was determined by the signature of the quadrati
form approximating the Lagrangian near a stationary point. This signature is equalto the signature of a linear operator representing this form using a positive de�niteinner produ
t, but if the quadrati
 approximation is written using an operator andan inde�nite inner produ
t, then its signature is e�e
ted both by the inde�nitenessof the operator and that of the inner produ
t. However, this 
an be easily resolved| all that one has to do is to pi
k a positive de�nite inner produ
t and to reexpressthe quadrati
 part of the Lagrangian in terms of the new inner produ
t.Pi
k a maximal 
ompa
t subgroup G
 of G, and a positive de�nite inner produ
ton G invariant under the Adjoint a
tion of G
, su
h that if G is written as the dire
tsum of the Lie algebra G
 of G
 and its orthogonal 
omplement Gn, then the originalbilinear form that we started with, tr, is given by the matrixn def=  I

 00 �Inn ! :(I

 and Inn are, of 
ourse, the identity matri
es of End[G
℄ and End[Gn℄, respe
tively).Also, it is more 
onvenient to repla
e the original gauge 
ondition k2�DiAi = 0 byk2�nDiAi = 0. With these 
hoi
es made, the operator to 
onsider is not the same LA0� ,51



but a slight variation of it ~LA0 , whi
h will presently be des
ribed. Let ~�i 2 End[G 
 V ℄be given by: ~�i def=  I

 
 �i 00 Inn 
 ��i ! : (5.9)Where ��i 2 End[V ℄ are given by multipli
ation by the opposite orientation quater-nions:��1 = 0BBB� 0 �1 0 01 0 0 00 0 0 10 0 �1 0 1CCCA ; ��2 = 0BBB� 0 0 �1 00 0 0 �11 0 0 00 1 0 0 1CCCA ; ��3 = 0BBB� 0 0 0 �10 0 1 00 �1 0 01 0 0 0 1CCCA :It is useful to note that the ~�'s satisfy the following 
ommutation relations:f~�i; ~�jg = �2Æij (5.10)[~�i; ~�j℄ = 2n�ijk~�k (5.11)After all those preliminaries, we 
an �nally write ~LA0 :~LA0 def= ~�i  ��xi + Ai! :Similarly to the 
ompa
t 
ase, we start our 
al
ulation by 
al
ulating (~LA)2. Re-membering the remark at the end of the previous se
tion, we �nd that[(~LA)2℄relevant = ~�i~�j�i�j + ~�i~�j(�iAj) + ~�i~�jA~�ji Aj(here the supers
ript ~�j denotes 
onjugation by ~�j | A~�ji def= ~��1j Ai~�j). Using ~�i~�j =12 (f~�i; ~�jg+ [~�i; ~�j℄) and equation (5.10),(5.11), we see that up to irrelevant pie
es,the last expression equals��+ n�ijk~�k(�iAj) + n�ijk~�kA~�ji Aj:Just as in the 
ompa
t 
ase treated in the previous se
tion we �nd now that thevariation of �(~LA) under ~LA ! ~LA+ÆA, that is to say, under~�l  ��xl + Al!! ~�l  ��xl + Al + ÆAl!is given by �C�1=2p� where C�1=2 is given by:C�1=2t1=2 = Z tr ~�lÆAl Z t0 ds Dx ���es�Fe(t�s)����xEand where F is given by: F = �n�ijk~�k �(�iAj) + A~�ji Aj� :52



Therefore, we �nd thatp�Æ�(~LA) = Z tr �ijlÆA~�ll n ��iAj + A~�ji Aj� : (5.12)We will now 
he
k that the last result, eq. (5.12) 
an be easily interpreted tobe to the variation of the Chern-Simons number of the proje
tion onto the subspa
eof 
ompa
t generators of the 
onne
tion A, with a 
oeÆ
ient proportional to thedi�eren
e of the Casimir numbers of the representations of G
 on G
 and on Gn.We �rst wish to understand matri
es of the form A~�ji . De
omposingAi =  A

i A
niAn
i Anni !a

ording to the de
omposition G = G
 � Gn, it is easy to 
he
k that the answer is:A~�ji =  A

i �jA
ni�jAn
i Anni !where �j def= ���j�j = ��j��j. Noti
e that the matri
es �j are always diagonal withtwo 1's and two �1's on the diagonal:�1 = 0BBB� 1 0 0 00 1 0 00 0 �1 00 0 0 �1 1CCCA ; �2 = 0BBB� 1 0 0 00 �1 0 00 0 1 00 0 0 �1 1CCCA ; �3 = 0BBB� 1 0 0 00 �1 0 00 0 �1 00 0 0 1 1CCCA :We now 
ome to understanding �p�Æ�(~LA)=2, that is, to understandingC�1=2 = 1(4�)3=2 Z tr �ijl(Æ1 + Æ2) def= 1(4�)3=2 Z tr �ijlÆA~�ll n ��iAj + A~�ji Aj� :Writting ÆA~�ll =  ÆA

l �lÆA
nl�lÆAn
l ÆAnnl !we see thatÆ1 =  ÆA

l �iA

j � �lÆA
nl �iAn
j �� �lÆAn
l �iA
nj � ÆAnnl �iAnnj ! :But the tra
es of the matri
es �l vanishes, and sotr �ijlÆ1 = 4tr �ijl �ÆA

l �iA

j � ÆAnnl �iAnnj � : (5.13)Similarly, we perform matrix multipli
ation and �nd that (for the same reason asbefore we 
an ignore terms in whi
h a matrix �l or j appears. In fa
t, we 
an evenignore terms in whi
h a produ
t �l�j appears - this is be
ause the anti-symmetrization53



�ijl 
onstrains l and j to be di�erent, and it is trivial to verify that for di�erent l andj one has tr �l�j = 0.)tr �ijlÆ2 = tr �ijl  ÆA

l A

i A

j �� �ÆAnnl Anni Annj !and so tr �ijlÆ2 = 4tr �ijl �ÆA

l A

i A

j � ÆAnnl Anni Annj � (5.14)Equations (5.13) and (5.14) together show that C�1=2 is in fa
t the variation ofthe Chern-Simons number of the proje
tion a of the 
onne
tion A onto the subspa
eof 
ompa
t generators, with a 
oeÆ
ient proportional to the di�eren
e of the Casimirnumbers of the representations of G
 on G
 and on Gn:Æ�(~LA)ÆA = � 1�2 Z �ijl �trG
ÆA

l (�iA

j + A

i A

j )� trGnÆAnnl (�iAnnj + Anni Annj )�= �
2(G
)� 
2(Gn)�2 Z tr �ijlÆal(�iaj + aiaj) = �2
2(G
)� 
2(Gn)�2 Æ
s(a)Æa : (5.15)If one ignores the di�eren
e between A and a, the above result means that in the 
aseof a non-
ompa
t gauge group the e�e
tive value of k is shifted by (
2(G
)�
2(Gn))=2similarly to the shift k ! k + 
2(G)=2 observed in the 
ompa
t 
ase in (5.5).The di�eren
e between A and a is a bit disturbing, however. The proje
tionP : A ! a depends on a 
hoi
e of a non-ad-invariant positive de�nite metri
 on Gand is not gauge 
ovariant, making the result (5.15) not gauge invariant. This is asimilar situation to the one en
ountered in (5.6) where the metri
 independe
e wasbroken by the regularization and the diÆ
ulty 
an be solved in a similar way | byadding to the original Lagrangian a lo
al 
ounter-term �L that depends only on A,g and the pointwise 
hoi
e of the proje
tion P . The required 
ounter-term is�L = 
2(G
)� 
2(Gn)32�
2(G) Z trG[DAT; T ℄ ^ FAwhere DA is the 
ovariant exterior derivetive twisted by A, FA is the 
urvature of A,and T = P � P?. Indeed one has
2(G
)� 
2(Gn)2 
s(a) + �L = 
2(G
)� 
2(Gn)2 
s(A)
orre
ting the non-gauge-invarian
e of (5.15).
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Chapter 6Some non-perturbative resultsIn [42℄ Witten has shown that the 
omputation of (1.2) 
an be redu
ed to a problemin 
onformal �eld theory whi
h 
an be solved giving a non-perturbative de�nition forthe in�nite dimensional integral (1.2). Before going into our perturbative analysis,let as �rst review his non-perturbative results.Witten's de�nition is quite su

essful in that he 
an show how to use it to evaluate(1.2) pre
isely for every three manifold M3 and link X in it, and not just 
al
ulateits leading large k asymptoti
s for R3, but it is less elementary and very parti
ular tothe Chern-Simons theory. There doesn't seem to be any dire
t relation between hisway of 
al
ulating and the perturbative 
al
ulation shown here, and it is interestingto 
ompare the two view points. Let us start by reviewing his results for a link inR3, as presented in [43℄. As is shown there, W(R3;X ; k) 
onsidered as a fun
tion ofk and the gauge group G = SU(N) is in fa
t up to a simple 
hange of variable theHOMFLY [23℄ polynomial of the link X , whi
h itself is a generalization of the Jonespolynomial of X .Witten shows that to de�ne W(R3;X ; k) unambiguously one needs to 
onsiderframed links instead of just links. That is to say, ea
h 
omponent X
 of the linkhas to be a

ompanied with a pres
ribed `framing' | a 
hoi
e up to homotopy of anowhere vanishing se
tion F
 of the normal bundle of X
, or, more geometri
ally, a
hoi
e of a `shadow' for ea
h 
omponent as in the �gure 6.1.A

ording to Witten, if the framing of link 
hanges by a single twist, W getmultiplied by e2�ih, where h is a real number determined by k and the representationR
 
orresponding to the 
omponent of the link on whi
h the twist was made. This isshown s
hemati
ally in �gure 6.2.In the 
ase where the underlying group G is SU(N) for some positive integer N ,and all the representations R
 are just the de�ning representation of SU(N) in CN ,h is given by: h = N2 � 12N(N + k) (6.1)The di�eren
e between any two framings of a single knot is measured using asingle integer | the number of signed twists required to 
hange one framing to the55



X F

Figure 6.1. A knot with two of its possible framings. (The arrows indi
ate thedi�eren
es between the two framings)

2   ih2   ih

Positive twistNegative twist

ee

XF

= =

Figure 6.2. The 
hange in W under a single twist.
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other, and the above relation shows that for a link with several 
omponents we 
an infa
t 
onsider two framings to be equivalent if the total number of twists required toswit
h from one framing to the other is zero, 
ounting all twists on all the 
omponentsof the given link. With this identi�
ation for ea
h link X = fX
g in R3 there is aunique preferred framing | the framing fF
g for whi
h the total linking number ofX is 0: $(X ) def= X
1;
2 $(X
1 ; F
2) = 0In this framing, Witten has shown thatW(R3;X ; k) has the following three propertieswhi
h allows one to 
al
ulate it for any given link:1. For q = e 2�iN+k (6.2)one has W(unknotted 
ir
le in R3; k) = qN=2 � q�N=2q1=2 � q�1=2 (6.3)(In fa
t, this relation 
an be derived from the following two by using the thirdrelation on the unknot whose planar proje
tion is 1)2. If the link X is the unlinked union of X1 and X2 thenW(R3;X ; k) =W(R3;X1; k)W(R3;X2; k) (6.4)3. Most important | the so 
alled \skein relation" | if the three links L0, L+,and L� di�er only inside a small ball where they look as in �gure 6.3,
LLL

Figure 6.3. The links involved in the skein relation.then the following relation holds:�qN=2L+ + (q1=2 � q�1=2)L0 + q�N=2L� = 0 (6.5)where for brevity we wrote L� for W(R3; L�; k).57



To 
ompare these results with ours we �rst need to expand them in powers of 1=k,and thus we will write for a link L�W(R3; L�; k) � N 
� + a�k + b�k2 :From (6.3) and (6.4) it is 
lear that 
� is just the number of 
omponents of the linkL� if L� is the unlinked union of unknotted 
ir
les. In addition, the zeroth order partof (6.5) reads �N 
+ + 0 +N 
� = 0 and as L+ and L� always have the same numberof 
omponents it means that the number of 
omponents of an arbitrary L� is givenby 
�. The terms of orders 1=k and 1=k2 in (6.5) give the following two relations:a+ � a� = 2�i(NN 
� �N 
0); (6.6)b+ � b� = 2�ia0 + 2�iN(NN 
� �N 
0)� �iN(a+ + a�): (6.7)If Ltw is the same one 
omponent link as L, only with its framing twisted posi-tively on
e, expanding the relation in �gure 6.2 in powers of 1=k gives two additionalrelations: a = atw + �i(N2 � 1) (6.8)b = btw + �iatwN2 � 1N � �N2 � 1N �iN2 + �2 (N2 � 1)� : (6.9)Theorem 4 The following assertions hold for links in R3:1. For a two 
omponent link L+, 1N(N2�1)a+ is 2�i times the linking number of itstwo 
omponents.2. For a single 
omponent knot L+ not ne
essarily with its preferred framing, a+(N2�1)is �i times its self linking number.3. For a single 
omponent knot L not ne
essarily with its preferred framing,~b def= 1N(N2�1)Re �b� a22N � is framing independent, and is in fa
t equal to our~W2(L).All of these assertions are easy 
onsequen
es of (6.6)-(6.9). For example:Proof of 3 To get the framing independen
e of ~b just use (6.8) and (6.9) to expressit in terms of atw and btw, and then noti
e that the resulting expression di�ers fromthat of ~btw only by the real part of an imaginary number. To show that ~b is equal to~W2(L) we just need to show that they satisfy the same skein relation. But for knotsL� with their preferred framings a� = 0 by 2, and therefore using (6.7) one gets~b+ � ~b� = 1N(N2 � 1)Re(b+ � b�) = 2�iN(N2 � 1)a0whi
h by 1 equals to �4�2 times the linking number of the two knots obtained by
utting L� as in �gure 4.5. It is easy to 
he
k that ~b(the unknot) = �pi2=6. 258



Chapter 7Translating BRST to Feynmandiagrams
7.1 The BRST argumentTo show that the Lagrangian that we obtained gives rise to a metri
 independenttheory in spite of the expli
it appearan
e of a metri
 in it, we will now introdu
e the`BRST' operator Q of Be

hi, Rouet, Stora, and Tyupin [8, 39℄ | the odd derivationa
ting on the spa
e of all fun
tionals of A; �; �
; 
, de�ned by the following formula:Q = ZM3 �(�i
a + fab
Abi

) ÆÆAai + �a ÆÆ�
a + 12fab

b

 ÆÆ
a! : (7.1)Whi
h is more 
onventionally written as:QAi = �(�i + ad Ai)
; (7.2)Q� = 0; (7.3)Q�
 = �; (7.4)Q
 = 12[
; 
℄ = 12Gafab

b

: (7.5)In (7.2) the expression \ad Ai" stands for the operator de�ned by (ad Ai)
def= [Ai; 
℄,in (7.5) and (7.1), fab
 are the stru
ture 
onstants of G, [Gb;G
℄ = fab
Ga, and [
; 
℄doesn't vanish be
ause of the anti-
ommutativity of 
.Lemma 7.1.1 QLtot(A; �; �
; 
) = 0.Lemma 7.1.2 There exists a fun
tional � of A, �, �
 and 
 (that depends on Ægij)su
h that under gij ! gij + Ægij, ÆLtot = Q�:Lemma 7.1.3 Q 
orresponds to a ve
tor �eld of zero divergen
e.59



Lemma 7.1.4 QO = 0.Let us �rst use the above four lemmas to prove thatW = Z D' OeiLtotis formally metri
 independent [45℄. Indeed, under gij ! gij + ÆgijÆhOi = Æ Z D' O(')eiLtot= i Z D' O(')eiLtotÆLtot= i Z D' Q�O(')eiLtot�� : (7.6)Here we used ' as a 
olle
tive name for A, �, �
 and 
 and in the last equality we madeuse of the �rst two lemmas. Now we just use the third lemma and the well-known fa
tthat the integral of a derivative taken using a divergen
e-free ve
tor �eld is alwayszero to 
on
lude our proof.Proof of lemma 7.1.1 This is just a simple 
al
ulation | one just applies Q to Ltotand sees it after some algebra. I will present this algebra here in a way that will beuseful for our later purposes. First, let us de
ompose Ltot to a sum of it's `free' partand it's `intera
tion' part, and to a sum of it's bosoni
 part and it's fermioni
 part:Lbos = Lbos,free + Lbos,int= k4� ZM3 tr �A ^ dA+ 2��iAi�+ k4� ZM3 tr23 (A ^ A ^ A)Lferm = Lferm,free + Lferm,int = k2� ZM3 tr ��
�i�i
�+ k2� ZM3 tr ��
�i[Ai; 
℄�Let us now 
al
ulate the variation under Q of ea
h of those parts:QLbos,free = � k2� ZM3 tr(d
+ [A; 
℄) ^ dA+ ��i(�i + ad Ai)
 (7.7)QLbos,int = � k2� ZM3 tr(d
+ [A; 
℄) ^ A ^ A= � k2� ZM3 tr d
 ^ A ^ A (7.8)QLferm,free = k2� ZM3 tr���i�i
� 12�
�i�i[
; 
℄� (7.9)QLferm,int = k2� ZM3 tr��Di[Ai; 
℄ + �
�i[�i
 + [Ai; 
℄; 
℄� 12�
Di hAi; [
; 
℄i� (7.10)It is now easy to see that the �rst term of (7.7) 
an
els (7.8), that the se
ond term of(7.7) 
an
els the sum of the �rst term of (7.9) and the �rst term of (7.10), that the60



se
ond term in (7.9) 
an
els the se
ond order part of the se
ond term of (7.10), andthat the remaining terms of 7.10 
an
el. 2Proof of lemma 7.1.2 Suppose that gij ! gij + Ægij. ThenÆLtot = k2� ZM3pgÆgijTijwith Tij = tr�(�i�)Aj + (�i�
)(�j + ad Aj)
�12gij �(�k�)gklAl + (�k�
)gkl(�l + ad Al)
��and then Tij = Q�ij for �ij = tr�(�i�
)Aj � 12gij(�k�
)gklAl�that is: ÆLtot = Q k2� ZM3pgÆgijtr�(�i�
)Aj � 12gij(�k�
)gklAl�! def= Q�: 2Proof of lemma 7.1.3div Q = ZM3 � ÆÆAai (�i
a + fab
Abi

) + ÆÆ�
a�a + 12 ÆÆ
afab

b

!= ZM3(�faa


 + 0 + faa


) = 0:(Noti
e that for semisimple, Abelian and nilpotent Lie algebras ea
h of the two termsabove vanishes independently). 2Proof of lemma 7.1.4 This follows from the interpretation of O as the holonomyof A along X , and the fa
t that the Q variation of A is just the in�nitesimal gaugetransformation 
orresponding to 
. But for later referen
e, we 
an already write thisproof in terms of diagrams. First, let us write the diagrams representing O itself:
dim R ....Next, let us 
al
ulate QO term by term:
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dQ

d

dQ

...Consider the terms that have an �i
 vertex in them. There is, of 
ourse, integrationover the position of this �i
, and this is the integral of a gradient whi
h 
an be repla
edby a di�eren
e of boundary terms. These 
an be seen to be equal to the negatives ofthe terms that have an [Ai; 
℄ vertex. 27.2 A simpler �nite dimensional analogueThe invarian
e argument shown above is, of 
ourse, quite in
omplete. It uses some fa-miliar rules of integral 
al
ulus in an in�nite dimensional setting in whi
h the standardintegration theory does not apply. However, what we have des
ribed in se
tion 1.2
an be seen as being a de�nition of an integration theory in our in�nite dimensionalsetting and we may wish to �nd how mu
h of the standard rules of 
al
ulus stillapply. The goal is to show that enough of standard 
al
ulus goes through, and thatthe invarian
e argument of the previous se
tion 
an be translated into the well-posedlanguage of Feynman diagrams. This will be done in the following two se
tions,beginning with a simpler �nite dimensional example that highlights one of the keypoints.In this se
tion, we will show that for any 1 � q � N the perturbative expansionof ZRN dNx ��qP + ikP�qjxj + 3ikP�qjkxjxk� eik( 12�ijxixj+�ijkxixjxk) (7.11)vanishes, where �q = �=�xq and P (x) is some monomial in x. Clearly, what we arenow set to show is true | the integrand in the above integral is a derivative,�q �P (x)eik( 12�ijxixj+�ijkxixjxk)� ;and if we believe the fundamental theorem of 
al
ulus, we are done. But in thein�nite dimensional 
ontext that we really 
are about we don't have the fundamental62



theorem of 
al
ulus and therefore we would like to �ne a dire
t 
ombinatorial proofat the level of Feynman diagrams that (7.11) indeed vanishes.De�ne C def= Diagrammati
expansion of ZRN dNx (�qP )eik( 12�ijxixj�ijkxixjxk);I def= Diagrammati
expansion of ZRN dNx 3ikP�qjkxjxkeik( 12�ijxixj+�ijkxixjxk):and F def= Diagrammati
expansion of ZRN dNx ikP�qjxjeik( 12�ijxixj+�ijkxixjxk);It is 
lear that (7.11) is equal to C + F + I. We will show below that F = �I � C.Following the rules of se
tion 1.2.4, we see that the diagrams in F have the normal�ijkxixjxk verti
es and �ij propagators, and in addition to them two distinguishedverti
es. The �rst of these distinguished verti
es 
orresponds to the monomial P(see �gure 7.1), and the se
ond (denoted by the `magnet' symbol ) 
orrespondsto i�qjxj (see �gure 7.2). Let us take a 
loser look at the se
ond distinguished
2

2

2 1

1

Figure 7.1. The vertex 
orresponding to the monomial x21x32.
Figure 7.2. The vertex 
orresponding to i�qjxj has only one ar
 emanatingfrom it be
ause i�qjxj is of degree 1. The magnet points to the dire
tion of`attra
tion'.vertex . When it appears in a diagram, say as in

2

2

2 1

1the �ij in the vertex gets multiplied by its inverse | the propagator 
onne
tingto � | and so the whole pi
ture 
an be repla
ed by the vertex
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2

2 1

1whi
h is one of the verti
es 
orresponding to ��q� ! Remembering that 
ouldhave been 
onne
ted to any of the other slots in �, we see that altogether all the waysto 
onne
t to � add up to give exa
tly the verti
es that 
orrespond to ��q�. Nowthere are two possibilities for what � 
ould be. If � is one of the regular �ijkxixjxkverti
es, then the pro
ess we just des
ribed (of `pulling with the magnet' gives one ofthe diagrams in �I. If � is the other distinguished vertex, the one 
orresponding tothe monomial P , then `pulling with the magnet' gives one of the diagrams in �C. 27.3 Translating BRST to Feynman diagramsLet us repeat the 
onsiderations of the previous se
tion in the slightly more 
ompli-
ated 
ase of the BRST invarian
e proof of se
tion 7.1. ConsiderF def= Diagrammati
expansion of Z D' (QLfree)untou
hedO�eiLtot;I def= Diagrammati
expansion of Z D' (QLint)untou
hedO�eiLtot;and C def= Diagrammati
expansion of Z D' (Q�)untou
hed O�eiLtot;where the subs
ript \untou
hed" means that when 
al
ulating QLfree and QLint noknown identities are to be used to simplify the resulting expressions | they shouldjust be left as they are.We will see that:1. C is equal to the variation with respe
t to the metri
 of W.2. F + I = 0.3. F = �I � C.These assertions 
learly imply ÆÆgW = 0, whi
h is what we've been aiming to prove.Ea
h of F , I, and C is a 
olle
tion of diagrams made using the usual propagatorsand the usual X2A, A3, and �
A
 verti
es, only that ea
h of those diagrams has anadditional distinguished vertex of a form determined by the terms in (QLfree)untou
hed,(QLint)untou
hed, and Q�. In addition, the diagrams in F and I will have a se
onddistinguished vertex, 
orresponding to �. For example, as Q� has in it a term:24� ZM3pgÆgijtr(�i�
)�j
; (7.12)64



some of the diagrams in C will have in them a single distinguished vertex of the form
i j

x

y

zδg
a b �! ZM3pgÆgijtab ��yiGdb(y; z)���yjGa
(x; y)�The other diagrams in C will have a distinguished vertex of either of the followingforms:

δg δgProof of 1. Using Æ �D�1� = �D�1(ÆD)D�1 (7.13)whi
h holds for every linear operator D, one 
an see that
=δg

δ

δg

δg

δg
δ

δg
δ

=

=

δg

and then for example
=

++

++
δg
δ

δgδg

δg
δg

δg

These are exa
tly the diagrams in C! (And it turns out that the 
ombinatori
s worksout right as well).Proof of 2. Just remove the subs
ripts \untou
hed" and reread the proof of lemma1.Proof of 3. Just as in the previous se
tion, the diagrams in F will all have adistinguished vertex of one of the following four kinds, 
orresponding to the four
65



terms in (7.7) and (7.9):
# #1 2

#3 #4

in ea
h of those verti
es, the slot marked by # has a di�erential operator a
ting onit. When a propagator is 
onne
ted to one of those slots, the relations de�ning thepropagator 
an be used to repla
e the propagator and the slot to whi
h it is 
onne
tedby a Æ-fun
tion, e�e
tively 
al
ulating the variation under Q of the vertex on the otherend of that propagator.There are now few possibilities as for where does that other end land.1. The slot # on a vertex might be 
onne
ted by a propagator to anotherslot on the same vertex . Here are the two su
h possibilities:
# #

2 3When # is repla
ed by a Æ-fun
tion as explained above, the resulting verti
esare:
andThese two verti
es are identi
al but with opposite signs, and therefore they
an
el. This is exa
tly the fa
t proven in lemma 3 | that div Q = 0.2. The distinguished vertex marked by a might be 
onne
ted through theslot # to an X2A vertex. After the 
onne
ting propagator is repla
ed by aÆ-fun
tion as usual, we get exa
tly the diagrams in QO. These were shown toadd up to zero in the proof of lemma 7.1.4.3. The distinguished vertex might be 
onne
ted through the slot # to aninternal vertex of the diagram, of type A3 or �
A
. In this 
ase the propagator66




onne
ting the two verti
es is repla
ed by a Æ-fun
tion, the resulting diagramwill have a distinguished vertex whi
h appears in � (QLint)untou
hed, and so weget just the diagrams in �I.4. The distinguished vertex might be 
onne
ted through the slot # to theother distinguished vertex - the one 
orresponding to �. In this 
ase the prop-agator 
onne
ting the two verti
es is repla
ed by a Æ-fun
tion, the resultingdiagram will have a single distinguished vertex, of the form �Q�. These areexa
tly the diagrams in �C. 2
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Chapter 8The isotopy invarian
e argumentIn this 
hapter we will prove (algebrai
ly, without the ne
essary analysis whi
h is notyet done) that the perturbative 
oeÆ
ients Wm(X) are invariants of knots embeddedin a 
at R3. Of 
ourse, if Wm(X) is a topologi
al invariant (does not depend on themetri
 g), then it has to be invariant under isotopies of the knot X, and so what weare set to show is a
tually a 
orrollary of the result of the previous 
hapter. However,the proof below di�ers in some ways from the proof in 
hapter 7, and this makespresenting this alternative proof worthwhile. The main advantage of the proof inthis 
hapter is that it `lives' entirely in 
at spa
e, and therefore it seems that it willbe easier to supplement it with the ne
essary 
onvergen
e analysis. Also, this proofis mu
h more expli
it, and makes the me
hanism by whi
h the variations of somediagrams 
an
el the variations of others mu
h 
learer.8.1 Feynman rules in 
at spa
eThe Feynman rules in 
at spa
e are, of 
ourse, spe
ializations of the rules givenin 
hapter 2. However, in 
at spa
e1 these rules 
an be generalized slightly. Itturns out that the only way perturbation theory (in this 
ase) depends on the Lie-algebra is through the numeri
al weights that are assigned to ea
h diagram D by the
ontra
tion of all the Lie-algebra indi
es in E(D), and that the invarian
e proof belowworks even if these numeri
al weights are repla
ed by arbitrary weights, so long asthese weights satisfy 
ertain relations that will be des
ribed below. Other solutionsof these relations (that do not ne
essarily 
ome from a Lie-algebra) might exist, andsu
h solutions might 
orrespond to new link invariants.We therefore rede�ne Wm(X) to be given byXD's of order m C(D)S(D) Z E(D); (8.1)where S(D) is de�ned just as in 
hapter 2, E(D) is de�ned as in 
hapter 2 onlywithout in
luding the Lie-algebra indi
es a, b, : : :, and the C(D)'s are arbitrary1Or a
tually, in arbitrary spa
e but relative to the trivial ba
kground 
onne
tion.68



weights that `blind' to the di�eren
e between gauge and ghost propagators and thedi�eren
e between A3 and �
A
 verti
es2 and satisfy the following relations:The \IHX" relation: Let the diagrams I, H, and X be identi
al outside a smalldomain, inside of whi
h they look as in �gure 8.1. Then their weights are expe
tedto satisfy C(I) = C(H)� C(X): (8.2)
UTSXHIFigure 8.1. The diagrams I, H, and X, and the diagrams S, T , and U .The \STU" relation: Let the diagrams S, T , and U be identi
al outside a smalldomain, inside of whi
h they look as in �gure 8.1. Then their weights are expe
tedto satisfy C(S) = C(T )� C(U): (8.3)Remark A
tually, a little more 
are is ne
essary. The vertex A3 as it was de�ned in(2.2) is symmetri
 with respe
t to the three propagators emanating from it, being aprodu
t of two anti-symmetri
 terms. In the A3 vertex that we use in this 
hapter thetensor tab
 is removed, and so our A3 vertex is anti-symmetri
. Therefore, if we wantto have unambiguous meaning to the Feynman rules, we must 
hoose an orientationto ea
h of the A3 verti
es in D | for ea
h A3 vertex, 
hoose one of the two possible
y
li
 orderings of the three propagators meeting in that vertex. We assume thatC(D) = �C(D0) if D0 di�ers from D only in the orientation of a single vertex, andwe use the 
onvention that in a planar proje
tion of a diagram ea
h of the verti
es isoriented 
ounter
lo
kwise (	).With our simplifying assumptions, some of the rules of 
hapter 2 be
ome a bitsimpler:

x
k

j
i �! i2� ZM3 dx �ijk; (8.4)
lz �! 12� ZM3 dz �lz; (8.5)i j� � � �x y �! Vij(x; y) = i�ijk(x� y)k2jx� yj3 ; (8.6)and �������!x y �! G(x; y) = 12jx� yj : (8.7)2Namely, if in a diagramD a loop of ghost (��������!) propagators 
onne
ted by �
A
 verti
es isrepla
ed by a loop of gauge ( � � � � ) propagators 
onne
ted by A3 verti
es, then C(Dbefore) =C(Dafter). 69



8.2 The variation of a diagram and the spider'sjourneyThe m'th term Wm in the perturbative expansion of W(X; k) is given by a weightedsum of integrals of 
ertain algebrai
 expressions whi
h are most neatly representedby Feynman diagrams as in (8.1), (8.4)-(8.7). Our aim in the rest of this 
hapter isto prove3 that under X ! X + ÆX = X + !,ÆWm =XD C(D)S(D) ÆZ E(D) = 0:To do that, we have to 
al
ulate ÆR E(D) for an arbitrary diagram D.Let us �rst des
ribe the `main part' of the 
omputation, disregarding variousboundary and 
onta
t terms whi
h will be the subje
t of the next se
tion. Che
kingformulae (2.1) and (2.4) we see that the `Vij(x; y)' 
onne
ted to ea
h X2A vertex inD 
an be regarded as 1-form (with respe
t to either the variable x or the variable y),and that the X2A vertex together with the s integration 
an be interpreted as theintegral of that 1-form along the 1-
y
le represented by a segment of the knot X. It istherefore 
lear that when the knot X is deformed, the variation of our integral R E(D)(whose only X dependen
e is in the X2A verti
es) is given4 by the evaluation of theexterior derivative of V on the in�nitesimal surfa
e S spanned by the deformationof X. This statement is reprodu
ed in diagrams in �gure 8.2. In that �gure, a new
SS

S
d

d d

boundary
termsFigure 8.2. The six diagrams arising from the 
omputation of Æ R E(D) for Dwith 3 type X2A verti
es.vertex is introdu
ed, 
orresponding to the evaluation of dLV on S:

S
d i

y �! � _Xj!k  ��xkVji(x; y)� ��xj Vki(x; y)!�����x=X(s) : (8.8)We see that in 
al
ulating ÆR E(D) we �nd expressions that involve dLV . Wheneversu
h a term is en
ountered, we will use `the key relation' of 
hapter 3.1 to repla
e it3Formally prove. Namely, present the algebra and 
ombinatori
s without 
onsidering the mu
hharder analysis problems.4Well, just almost given. There is a boundary 
orre
tion whi
h will be dis
ussed in the nextse
tion. 70



by the right hand side of that relation. Re
all that the key relation states that thereexists a (2; 0)-form F on R3 for whi
h(dLV )ij;k(x; y) = (dRF )ij;k(x; y) + 2�i�ijkÆ(x� y): (8.9)In diagrams, the relation (8.9) is reexpressed asd� � � �ij k = d�����>�����ij k + �ijk: (8.10)The last relation that we will use repeatedly is a 
ombination of integration byparts and Leibnitz' rule des
ribed by the following diagram:
w

z

y

l

k

ij
x

d

dd : (8.11)The 
orresponding formula is:i2� ZR3 dw �mnp  ��wmFij;�(x; w)!Vpk(w; y)Vnl(w; z)= �i2� ZR3 dw �mnpFij;�(x; w) Vnl(w; z) ��wmVpk(w; y) + Vpk(w; y) ��wmVnl(w; z)!= i4� ZR3 dw �mnpFij;�(x; w) �Vnl(w; z)(dLV )pm;k(w; y)� Vpk(w; y)(dLV )mn;l(w; z)� :Summarizing, we �rst 
ompute ÆR E(D) as in �gure 8.2, and then alternate repla
-ing dLV by dRF as in (8.10) and integrating by parts as in (8.11). We 
an visualizethis pro
edure by imagining a spider walking on our diagram on gauge (� � � � )propagators, beginning from some X2A vertex, 
hanging every gauge (� � � � )propagator that he had followed to a dotted (�����>�����) propagator as in (8.10), andde
iding whether to turn left or right whenever he rea
hes an A3 vertex as in (8.11).The variation ÆR E(D) is then given by a sum over all possible `spider walks' on Dof various boundary and 
onta
t terms that we have so far ignored and over all the`deadends' | spider walks that 
annot be 
ontinued further be
ause the spider ar-rived at an X2A vertex or a �
A
 vertex, or has stepped on his own footsteps. We will
onsider all these boundary terms, 
onta
t terms, and deadends in the next se
tion.8.3 Boundary terms, 
onta
t terms, and deadends8.3.1 The beginning of the journeyThere are two types of diagrams produ
ed in the evaluation of ÆR E(D) even beforethe spider begins his journey. The �rst of them is the boundary term in �gure 8.2 |71



if the 1-form V�i(�; y) was evaluated on a 
losed 
y
le, there would have been no needfor a 
orre
tion in �gure 8.2. But a
tually, it is evaluated on a 
y
le whose ends aregiven by two other X2A verti
es in D, and more 
are need to be taken near the ends.Stokes' theorem says that the integral of V�i(�; y) around the 
omplete boundary ofthe part of S lying between these two X2A verti
es is given by (8.8). This boundaryis made of four pie
es | two long and almost parallel pie
es that follow X and whosedi�eren
e is exa
tly what we are trying to 
ompute, and two in�nitesimal pie
es nearthe ends (see �gure 8.3). The 
ontributions to (8.8) from the two latter pie
es needsto be subtra
ted o�, and this is done by the following `R1' verti
es:The 
ontext: The vertex R1: The formula for R1:
; s

j

i

z

y � _Xk!l � _X l!k�Vli(X; y)Vkj(X; z)The above re
tangle is the form in whi
h all the 
ontributions to ÆWm will bedes
ribed. The left most 
olumn is the `
ontext 
olumn' that des
ribes the 
ontext inwhi
h the presently dis
ussed term appears | our term appears whenever there aretwo neighboring X2A verti
es in a diagram D, and we are 
onsidering one of them asthe boundary of the other's domain of integration. The slash (=) on the knot segment
onne
ting these two verti
es indi
ates that the present 
ontribution 
omes when thelength of this segment vanishes. The 
enter 
olumn is a diagram part that servesas the symbol of the 
urrently dis
ussed 
ontribution to ÆR E(D). To get the pre
iseformula for this 
ontribution, repla
e the symbol R1 by the formula in the right most
olumn, and pro
eed to evaluate the other parts of D as in se
tion 8.1.The se
ond 
ontribution to ÆR E(D) that arises even before the beginning of thespider's journey is the 
onta
t term arising from the Æ-fun
tion in (8.10), when thisformula is �rst applied:The 
ontext: The vertex R2: The formula for R2:
s

j

i

z

y �klm�mnp!k _X lVnj(X; z)Vpi(X; y)8.3.2 The journeyDuring the journey itself, in whi
h the operations (8.11) and (8.10) are alternated,there is only one kind of `left over' 
ontribution | the 
onta
t term arising from theÆ-fun
tion in (8.10):
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SdFigure 8.3. The boundary term R1: In these diagrams, the solid ellipses rep-resent the knot X and the dashed ellipses represent the deformed knot X + !.The �rst two diagrams represent the part of the 
ontribution to ÆR E(D) 
omingfrom varying the position of one of the X2A verti
es in D. This X2A vertex isintegrated over a range (marked by a double arrow $) bounded by two neigh-boring X2A verti
es. By Stokes' theorem, the quantity that we are interestedin, the di�eren
e of the �rst two diagrams, is given by an integral of dLV on thevariation surfa
e S (represented by the third diagram), plus the evaluation of Von the two short segments 
onne
ting the solid and the dashed ellipses near thebounding X2A verti
es. This last 
ontribution is given by the term R1.
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The 
ontext: The vertex R3: The formula for R3:
;;

m

l

k

ij

u

w

z

y

x

�i4� ZR3 du �npq�pqr�rstFij;�(x; u)�Vkn(y; u)Vms(w; u)Vlt(z; u)= �i2� ZR3 du �nstFij;�(x; u)�Vkn(y; u)Vms(w; u)Vlt(z; u)An example for a term of this sort will be the term
zy

u
t sr

q
p

n

m
kl

ij

5

4

3
2

1 �! �18�2 Z
y
li
ly ordered s1�5ds1�5 dy dz !i(s1) _Xj1 _Xm2 _Xu3 _Xs4 _Xp5�Fij;�(X1; y)�nklVmn(X2; y)Fkl;�(y; z)��qrtVuq(X3; z)Vsr(X4; z)Vpt(X5; z) (8.12)
that arises in the variation of the diagrams

, and :Noti
e that in the translation pro
ess in (8.12) we used the following two rules todeal with dotted (�����>�����) propagators and the F 2A vertex 
onne
ting two dottedand one gauge propagator, in addition to the standard rules of se
tion 8.1:1. x y�����>�����ij � = Fij;�(x; y)  = �ijk i(x� y)k2jx� yj3! : (8.13)2.
w

z

k

ij

y

x �! i4� ZR3 dw �lmnFij;�(x; w)Vkl(y; w)Fmn;�(w; z) (8.14)8.3.3 The spider returns to the linkRight before the spider arrives at the link ba
k again we get the following 
onta
t
ontribution, as usual from the Æ-fun
tion in (8.10):74



The 
ontext: The vertex R4: The formula for R4:
s

z

y k

ij

�12�lmn�mnp _XpFij;�(z;X)Vkl(y;X)= � _X lFij;�(z;X)Vkl(y;X)When the spider arrives at the link, we get the following `dead end' 
ontribution:
y

sij d �! � _Xk ��zkFij;�(y; z)�����z=X (8.15)Noti
e that here we are taking the line integral of a gradient � ��zkFij;�(y; z)� along asegment of the knot X. Thus by the fundamental theorem of 
al
ulus (8.15) 
an bewritten as the di�eren
e of the values of Fij;�(y;X(s)) at the two end points of theline of integration. Su
h an endpoint might be a regular X2A vertex, in whi
h 
asewe get the term:The 
ontext: The vertex R5: The formula for R5:
; s

z

y k

ij

_X lFij;�(z;X)Vkl(y;X)Or else, su
h an end point might be the spe
ial X2A vertex from whi
h our spiderbegan its journey. The term 
orresponding to this later possibility is:The 
ontext: The vertex R6: The formula for R6:
;

ijz

y

s Fij;�(z;X)!k _X lFkl;�(X; y)
8.3.4 The spider meets a ghostAs usual, we �rst have a 
onta
t 
ontribution from right before the spider-ghostmeeting:
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The 
ontext: The vertex R7: The formula for R7:
u

w

z

y

x

k

ij

�14� ZR3 du �lmn�mnp(�puG(u; w))G(u; z)�Fij;�(x; u)Vkl(y; u)= �12� ZR3 duG(u; z)Fij;�(x; u)�Vkl(y; u)�luG(u; w)Then we also get a `dead end' 
ontribution
w

z

y
x
ij

d �! 12� ZR3 dwG(y; w) ��wkFij;�(x; w)! �kwG(w; z); (8.16)whi
h 
an be expanded further by integrating w by parts and using Leibnitz' rulessimilarly to what was done in (8.11). There are two resulting terms. The �rst one iswhen Leibnitz' rule instru
ts us to turn left in (8.16). In this 
ase there isn't reallymu
h that we 
an do, so we just leave the resulting term as it is:The 
ontext: The vertex R8: The formula for R8:
w

y
x

z

d

ij

�12� ZR3 dw Fij;�(x; u) (�wk G(y; w))��kwG(w; z)The se
ond possibility is that Leibnitz' rule instru
ts us to turn right in (8.16).In this 
ase we get
w

y
x

z
dij

�! �12� ZR3 dw Fij;�(x; u)G(w; y)�wk �kwG(w; z)= ZR3 dwFij;�(x; u)G(w; y)Æ(w� z):Integrating w and bringing into sight the �
A
 vertex at the z side of the w-z propa-gator, we get the following 
ontribution to ÆR E(D):
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The 
ontext: The vertex R9: The formula for R9:
u

w

z

y

x

k

ij 12� ZR3 dwG(u; z)Fij;�(x; u)Vkl(y; u)��luG(u; w)8.3.5 The spider meets his own footstepsThe 
onta
t 
ontribution from right before the meeting is:The 
ontext: The vertex R10: The formula for R10:
foot st eps

lm

k

ij

u

w

z

y

x

�i8� ZR3 du �nst�str�rpqFpq;�(u; w)�Flm;�(y; u)Fij;�(x; w)Vkn(y; u)= �i4� ZR3 du �npqFpq;�(u; w)�Flm;�(y; u)Fij;�(x; w)Vkn(y; u)In the above diagram, the `footsteps' are assumed to be the dotted (�����>�����)propagators 
onne
ting x to u and u to w, and the spider 
omes ba
k to the areafrom the dire
tion of z. This explains the `twist' in the 
ontext 
olumn.There is also the `dead end' 
ontribution, whi
h we simply leave as it is:The 
ontext: The vertex R11: The formula for R11:
r

dips

e

st eps

foot

kl

ij d

w
z

y

x

�i4� ZR3 dw Fij;�(x; w)�mnpFnp;�(w; z)��wmFkl;�(y; w)8.3.6 The journey ends before it really startedThe spider's journey might end before it really gets going if he has a too short 
hainof gauge (� � � � ) propagators to travel on | namely, if that 
hain is of length1 | namely, if the spider starts on an X2A vertex that is 
onne
ted via a gauge(� � � � ) propagator to anything but an A3 vertex. The three possibilities are:
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The 
ontext: The vertex R12: The formula for R12:
s

z

y �iG(y;X)!i _Xj�ijk �kwG(w; z)���w=XThe 
ontext: The vertex S: The formula for S:
21 �ijk!i _Xj1 _Xk2 Æ(X1 �X2)andThe 
ontext: The vertex T : The formula for T :

T �ijk!i _Xj _XkÆ(X �X)Noti
e that the last two 
ontributions di�er only by the separation between thetwo ends of the gauge propagator being treated. In T these two ends are assumed tobe adja
ent, while in S they are assumed to be separated by some other X2A verti
es.8.4 
an
ellationsIn the previous se
tion we 
omputed ÆWm and found that it is given by a sum of14 types of 
ontributions: R1-R12, S, and T . In this se
tion we will see that these
ontributions all 
an
el ea
h other, and therefore ÆWm = 0. Let Rn denote thetotal 
ontribution to ÆWm that 
omes from diagrams of type Rn, S denote the total
ontribution of type S, and T denote the total 
ontribution of type T .Proposition 8.4.1 R1 +R2 = 0: (8.17)Proof The identity �klm�mnp = Ænk Æpl � ÆpkÆnl (8.18)shows that verti
es of type R2 are, in fa
t, pre
isely the negatives of to verti
es oftype R1, while the 
ontext 
olumns in the de�nitions of these two verti
es shows thatR1 
omes with weight C(T )�C(U), and that R2 
omes with weight C(S). The STUidentity (8.3) 
on
ludes the proof. 2Proposition 8.4.2 R3 = 078



Proof Diagrams of type R3 
ome with weights C(I), �C(H), or C(X), as 
an beread from the 
ontext 
olumn in the de�nition of R3. The IHX identity (8.2) showsthat these weights 
an
el ea
h other. 2Proposition 8.4.3 R4 +R5 = 0Proof Similarly to (8.17) this identity follows from the STU identity (8.3). 2The proofs of the following three propositions rely on the observation that a 
hainof dotted (�����>�����) propagators 
onne
ted by F 2A verti
es is essentially equivalentto a 
hain of ghost (�������!) propagators 
onne
ted by �
A
 verti
es:i2�lij 0BBBB�
kk z pz2z1

ypy2y1
ij

21 k p

w
x

...

1CCCCA = ��xl 0BBBB�
kk z pz2z1

ypy2y1

21 k p

w
x

...

1CCCCA :(8.19)This identity is an immediate 
onsequen
e of the de�nition of the ghost propagator(8.7), the de�nition of the dotted propagator (8.13), the de�nitions of the F 2A and�
A
 verti
es ((8.14) and (8.5)), and the identity�lnp�npq = 2Ælq:Proposition 8.4.4 R8 +R11 = 0:Proof Immediate from the dotted-ghost relation (8.19), the de�nition of the R8 andR11 verti
es, and the fa
t that the diagrams of type R8 have one more ghost loopthan their 
ounterparts of type R11 and therefore they get opposite signs from (2.5).2Proposition 8.4.5 R6 +R12 = 0:Proof Immediate from (8.19), (8.18), (2.5), and the STU relation (8.3). 2Proposition 8.4.6 R7 +R9 +R10 = 0:Proof Immediate from the dotted-ghost relation (8.19), from (2.5), and from theIHX relation (8.2). 279



Proposition 8.4.7 S = 0:Proof We just have to remember that the points 1 and 2 in the de�nition of theterm S are always distin
t, and therefore Æ(X1 �X2) = 0. 2Remark This proof is a
tually more interesting when it breaks down | when theknot X is deformed in su
h a way that a self-interse
tion is 
reated. In this 
ase thepoints 1 and 2 are not ne
essarily distin
t, Æ(X1 � X2) 
an be non-zero, and whenit is non-zero we get a skein-like relation similar to Vassiliev's relation (9.23). It isexa
tly this term S that assures that Wm(X) is a non-trivial knot invariant!Proposition 8.4.8 If one is willing to be a bit naive,T = 0:Proof The formula for the term T isdet � _X���! ��� _X� Æ(X �X):If one is willing to be a bit naive, then the determinant in the �rst part of this formula,det( _Xj!j _X), vanishes be
ause it has two equal 
olumns and this 
an
els the in�nityof Æ(X �X). 2Remark A
tually, proposition 8.4.8 is blatantly false. 0 �1 = 0 doesn't make mu
hmathemati
al sense as it stands, parti
ularly when the 1 is su
h a `large' 1 | itis a three dimensional Æ-fun
tion integrated on just a line! So 
learly, more 
areneeds to be taken when 
onsidering the vertex T . This is essentially what is donein se
tion 3.3, where it is shown that the failure of proposition 8.4.8 is proportionalto the total torsion � of X. I believe that the same \
orre
tion" pro
edure that wasused there | subtra
tion of a 
ertain multiple of � | 
an be used in the higher loop
ase introdu
ing a framing dependen
e to Wm. This is yet to be proven.Either way, whether by 
hoosing to be naive or by believing that the failure ofproposition 8.4.8 
an be 
orre
ted as in se
tion 3.4, propositions 8.4.1-8.4.8 prove thatÆWm(X) = R1 + : : :+R12 + S + T = 0;and therefore Wm(X) should be a knot invariant. 2
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Chapter 9The Lie-algebrai
 weights ofFeynman diagrams
9.1 Introdu
tionThe purpose of this 
hapter is to introdu
e a 
ertain 
ombinatorial-algebrai
 problem,dis
uss its signi�
an
e to knot theory (and to a lesser extent, to quantum �eld theory),and present some solutions of it. The most general solution to this problem has notyet been found, and �nding it is likely to lead to the dis
overy of new knot and linkinvariants.In this 
hapter, the words 
losed diagram will always refer to a graph made ofa 
ertain number of dire
ted ellipses (
alled Wilson loops) marked by the naturalnumbers 1; : : : ; I, and a 
ertain number of dashed lines (
alled propagators). Thepropagators and the Wilson loops are allowed to meet in two types of verti
es | onetype (
alled type R2G) in whi
h a propagator ends on one of the Wilson loops, andanother (
alled type G3) 
onne
ting three propagators. We assume that the se
ondkind of verti
es are oriented | that one of the two possible 
y
li
 orderings of thethree propagators meeting in su
h a vertex is spe
i�ed. The order of su
h a diagramswill be half the total number of verti
es in it.

Figure 9.1. An example for a 
losed diagram of order 6.Figure 9.1 is an example for su
h a diagram with I = 2. In this �gure (as inthe rest of this 
hapter) ea
h of the verti
es is oriented 
ounter
lo
kwise (	). This81




onvention means that the two diagram parts in �gure 9.2 are not equivalent. Also,remember that our diagrams are not allowed to have higher than 
ubi
 verti
es. It istherefore impli
itly understood that when four or more lines meet at the same point,that point is not a vertex and those lines pass ea
h other without \intera
tion".
Figure 9.2. Two diagram parts whi
h di�er only by the orientation of one oftheir verti
es.We will be looking for assignments D ! C(D) that assign a weight C(D) insidesome pre-
hosen Abelian group to ea
h diagram D, and satisfy the following tworelations:The \IHX" relation: Let the diagrams I, H, and X be identi
al outside a smalldomain, inside of whi
h they look as in �gure 9.3. Then their weights are expe
tedto satisfy C(I) = C(H)� C(X):

XHI Figure 9.3. The diagrams I, H, and X.The \STU" relation: Let the diagrams S, T , and U be identi
al outside a smalldomain, inside of whi
h they look as in �gure 9.4. Then their weights are expe
tedto satisfy C(S) = C(T )� C(U):Main problem Find all su
h assignments C.Su
h assignments will be 
alled weight systems.There are very good reasons to believe that ea
h weight system will give riseto a link invariant. When one 
onsiders the perturbative expansion of the Chern-Simons quantum �eld theory as des
ribed here, one en
ounters diagrams mu
h likethe above. The diagrams in the Chern-Simons theory 
orrespond to integrals, and Ihave shown in 
hapter 8 that (assuming some 
onvergen
e whi
h is yet to be proven)these integrals summed with `
orre
t' weights add up to give link invariants. The82



S T UFigure 9.4. The diagrams S, T , and U .word `
orre
t' in the previous senten
e means exa
tly \satisfying the relations IHXand STU". In 
hapter 4 I have 
arried out this program for the diagrams of order� 2, and in [42, 43℄ Witten has shown that the HOMFLY polynomial [23℄ 
an bederived from the Chern-Simons quantum �eld theory, and therefore 
an probably bere-derived using our te
hniques. The weight system C that should 
orrespond tothe HOMFLY polynomial is presented in se
tion 9.5. I don't know whi
h are theknot invariants 
orresponding to most of the other weight systems presented in this
hapter, and I do not know whether there are further weight systems beyond thosepresented here.As was (impli
itly) shown in [42℄ and dis
ussed in this thesis from the perturbativepoint of view, to ea
h weight system should 
orrespond a three-manifold invariant aswell.In se
tion 9.6 a se
ond relation, due to Vassiliev [41℄ and Birman-Lin [10℄, betweenthose weight systems and knot theory is dis
ussed.9.2 The methodLet F be a �eld, and let D be a 
losed diagram. I will now show how, given someLie algebrai
 data, we 
an asso
iate an element CG(D) of F to D. Of 
ourse, the
onstru
tion below is pre
isely the `Lie-algebrai
' part of the 
onstru
tion in 
hapter 2.Let G be a �nite dimensional Lie algebra over the �eld F, R1; : : : ; RI a list of�nite dimensional representations of G (one for ea
h Wilson loop in D) of dimensionsd1; : : : ; dI, and let tr be a non-degenerate F-valued ad-invariant bilinear form on G
G,where ad denotes the adjoint representation of the Lie algebra G on its underlyingve
tor spa
e. Let fGag be a basis for G, fr�i g a basis of Ri, and de�ne the tensors tab,tb
, f 
ab, tab
, and R�ia� by the following formulae:tab = tr(Ga;Gb);tabtb
 = Æ 
a ;[Ga;Gb℄ = f 
abG
;tab
 = f dabtd
;Ri(Ga)r�i = R�ia�r�i :To de�ne CG(D), �rst mark every Wilson loop segment in D by a greek letter83



�; �; : : :, and every end of every propagator by a small letter in the English alphabet| a, b, : : :.
a

b c

a’

b’ c’

α

βγ

Figure 9.5. An unmarked diagram and a marked diagram.I will now des
ribe how to 
onstru
t a 
ertain algebrai
 expression out of D andits marking:1. To ea
h type G3 vertex in D asso
iate a t��� symbol with the � � � repla
ed by theletters marking that vertex, pi
king those letter in an order 
onsistent with theorientation of the vertex. Using the invarian
e of tab it is easy to 
he
k thattab
 = tb
a = t
ab, and so the parti
ular order 
hosen is immaterial.2. To ea
h propagator in D asso
iate a t�� symbol with the dots repla
ed by theletters marked at the ends of that propagator.3. To ea
h type R2G vertex asso
iate an R��� symbol with the dots repla
ed by theletters marking that vertex, as in the �gure below:
a

βγ �! R�a
4. Take the produ
t of all the above mentioned t���, t��, and R��� symbols.5. Sum over �; �; : : :, and a, b, : : :, and 
all the result CG(D).For example, if D is the diagram in �gure 9.5, then (summation understood)CG(D) = ta0b0
0ta0atb0bt
0
R�a
R
b�R�
� (9.1)Well-de�nedness We will now 
he
k that CG(D) is independent of the 
hoi
esof bases that were made. Clearly, CG(D) is independent of the 
hoi
e of fr�g | asis demonstrated in (9.1) the representation R appears only through matrix tra
es ofthe form tr R(Ga)R(Gb)R(G
):Suppose that f �G�ag is a di�erent basis of G. One 
an de�ne �t�a�b, �t�a�b�
, and �R��a� withrespe
t to this new basis, and use these tensors to de�ne �CG(D). We will show now84



that �CG(D) = CG(D). The two bases are related by some linear transformation |that is to say, there exists a matrix fM �aag for whi
h�G�a =Ma�aGaOne 
an 
he
k rather easily that the new tensors are given by the old ones throughthe following formulae: �t�a�b = Ma�aM b�b tab�t�a�b = (M�1)�aa(M�1)�bbtab�t�a�b�
 = Ma�aM b�bM 
�
 tab
�R��a� = Ma�aR�a�where (M�1)�aa is the inverse matrix of Ma�a . It is now easy to see that when theseexpressions for �t�a�b, �t�a�b�
, and �R��a� are 
ombined together to form �CG(D), every matrix(M�1)�aa 
an
els every Ma�a .9.3 Relations between the CG(D)'s9.3.1 Tensors and relations between themSo far, we used the fa
t that the tensors that went into the 
onstru
tion of CG(D)
ame from a Lie algebra and satis�ed 
ertain relations only in a very mild way | in
he
king that tab
 = tb
a = t
ab. We will now see what relations among the CG(D)'s
an be dedu
ed from the relations that tab, tab
, and R�a� are known to satisfy.First, a slight generalization. Using more or less the same pro
edure as before we
an assign to every non-
losed diagram D, whi
h is allowed to have propagators with\free" ends and non-
losed Wilson lines, a tensorT = T (D) 2 G
n 
 JOi=1 �Ri 
 �Ri� : (9.2)Here n is the number of propagators with free ends, R1; : : :RJ are the representations
orresponding to the non-
losed Wilson lines, and the �Ri's are their duals. It is 
learhow to de�ne T | one just needs to follow the same steps as in the de�nition ofCG, and as D is not 
losed some of the indi
es will appear only on
e in the resultingexpression and instead of being summed over these indi
es will serve as the indi
esof the tensor T . For example:
α β

a ba’ b’

c’

c
�! T �;ab� = Xa0;b0;
0;
 taa0tbb0t

0tb0a0
0R�
� 2 G
2 
 R
 �R
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Claim 1 The two diagrams in �gure 9.2 
orrespond to tensors whi
h are the negativesof ea
h other.Proof The is simply the fa
t that the Lie bra
ket is anti-symmetri
. 2Claim 2 Let the diagrams S, T , and U be as in �gure 9.4. Then the tensors 
orre-sponding to them satisfy: T (S) = T (T )� T (U) (9.3)Proof This is simply the fa
t that R is a representation. That is, that R([Ga;Gb℄) =R(Ga)R(Gb)�R(Gb)R(Ga). 2Claim 3 Let the diagrams I, H, and X be as in �gure 9.3. Then the tensors 
orre-sponding to them satisfy: T (I) = T (H)� T (X) (9.4)Proof Translating I, H, and X into their 
orresponding tensors, it is easy to see thatthis is simply the Ja
obi identity! (In fa
t, this 
laim 
an be regarded as a parti
ular
ase of the previous one, asserting that the adjoint a
tion of a Lie-algebra on itself isa representation). 29.3.2 SewingGiven two open diagrams A and B and a (partial) 
orresponden
e ' between theiropen ended lines whi
h sends a propagator to a propagator and an ingoing (outgoing)Wilson line to an outgoing (ingoing) Wilson line labeled by the same representation,one 
an de�ne their join A#B to be the diagram obtained by sewing the externallines of A with those of B a

ording to the 
orresponden
e '. It is also possibleto sew T (A) to T (B) by 
ontra
ting their indi
es as di
tated by ', (using tab tolower the propagator indi
es). It is 
lear that the resulting T (A)#T (B) will equalT (A#B). In parti
ular, if A#B is a 
losed diagram, then CG(A#B) = T (A)#T (B).(See �gure 9.6).
=#Figure 9.6. Sewing two diagrams.
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Thus (9.4) and (9.3) 
an be used to derive relations between 
losed diagrams |(9.4) says that if three diagrams �I, �H and �X are identi
al outside of a small domainin whi
h they look like the diagrams I, H, and X of �gure 9.3, then they satisfyCG(�I) = CG( �H)� CG( �X): (9.5)Similarly, (9.3) implies CG( �S) = CG( �T )� CG( �U): (9.6)The last two relations show that D ! CG(D) is a weight system in the sense ofse
tion 9.1.Lemma 9.3.1 For any open diagram D, T = T (D) is an invariant tensor (withrespe
t to the natural a
tion of G on ea
h of the 
omponents in (9.2)).Proof The reason why this lemma is true, is that T 
an be seen as the 
ontra
tionof a 
olle
tion of invariant tensors | the t���, the t�� and the R��� are all invariant. Thisstatement 
an be translated into a 
ombinatorial invarian
e proof. I will just sket
hthis proof here, and supplement this sket
h with a simple example | �gure 9.7.
D

12

11

10

9

8

7

6

5

4

3

2

1

P

PPPP

P P P

PPPP

P

Figure 9.7. A simple invarian
e proof | the tensor D is the sum of 1-12.Relation IHX shows that 1+ 2+ 3 = 10+ 11+ 12 = 0, relation STU showsthat 4+5+6 = 7+8+9 = 0, 
laim 1 shows that 1+12 = 2+6 = 7+11 = 0,and 4+ 9 = 0 by the 
hoi
e of signs. It follows that 3+ 5+ 8+ 10 = 0. Thisis exa
tly the fa
t that T is an invariant tensor.87



For simpli
ity, I will disregard � signs here. Say D has n internal verti
es. Pi
k apoint P outside of D and 
onsider the 3n diagrams obtained by 
onne
ting P usinga propagator to ea
h of the three lines emanating from ea
h of the n verti
es in D.Let D be the sum of the tensors 
orresponding to these 3n diagrams. Ea
h internalline in D has two terms 
orresponding to it in D 
oming from the two verti
es at theends of that line, and with the proper 
hoi
e of signs these two terms exa
tly 
an
el.The only diagrams that still 
ontribute to D are those in whi
h P is 
onne
ted to anexternal line, and, if P is marked by a, these are exa
tly the diagrams that representthe variation of D with respe
t to Ga.On the other hand, the relations (9.4) and (9.3) show that ea
h group of threediagrams made by 
onne
ting P to the three lines emanating from a single propagator
orresponds to tensors that add up to 0. D is just a sum of su
h groups, and this
on
ludes the proof. (See �gure 9.7). 2Remark The behavior ofD! T (D) under sewing means that we've a
tually de�neda topologi
al Quantum Field Theory of dimension 1, satisfying Segal's axioms (see[4, 46℄). Lemma 9.3.1 shows that the ve
tor spa
e assigned by our QFT to n + 2Jpoints, n of whi
h labeled `G', J labeled R1; : : : RJ , and J labeled �R1; : : : �RJ , is thespa
e of invariant tensors in G
n 
 JOi=1 �Ri 
 �Ri� :Every diagramD with n+2J free ends (of the appropriate kinds) gives a ve
tor T (D)in that ve
tor spa
e.Lemma 9.3.2 If the representation R is irredu
ible, the fa
torization property illus-trated in �gure 9.8 holds. (In that �gure, the blobs and simply representarbitrary subdiagrams with an arbitrary number of 
onne
tions to the Wilson loop).
dim R

Figure 9.8. The fa
torization property.Proof Clearly, the two sides of the equation in �gure 9.8 represent two ways of
ontra
ting the tensors A�� and B�� 
orresponding to the two open diagrams obtainedby removing the \bridge" in the left hand side of that equation. But from lemma88



9.3.1 and the irredu
ibility of R it follows that A and B must be multiples of theidentity matrix: A�� = aÆ�� ; B�� = bÆ��:This redu
es �gure 9.8 to the trivial assertiondaÆ��bÆ�� = aÆ��bÆ��: 2Remark taking the blobs and to be empty shows that it's natural tode�ne CG( ) = dimR = d.9.4 Evaluation of some diagrams for simple alge-brasIn this se
tion G will be a simple Lie algebra over the real or 
omplex �eld, and Rwill be an irredu
ible representation of G. In this 
ontext, it is possible to evaluatesome diagrams in a relatively simple way.The key point is that under the above 
onditions, the spa
es of invariant tensorsin G 
 G and in R 
 �R are both one-dimensional, and therefore one 
an speak of`ratios' of invariant tensors in G 
 G or in R
 �R.De�nition 1 The 
onstants r and g are given by the following ratios1:g = 0BBBBBB� 1CCCCCCA r = 0BBBBBBB� 1CCCCCCCA : (9.7)(Noti
e that by lemma 9.3.1 the above tensors are all invariant).In the following few lines, we see how the relations from the previous se
tion 
anbe used to evaluate CG for all 
losed diagrams with a single Wilson loop and orderssmaller than three. For brevity, we omit the symbol CG below.= d by the remark after lemma 9.3.2 (9:8)= r = dr by (9.7) and (9.8) (9:9)= g = dgr by (9.7) and (9.9) (9:10)= r = dr2 (9:11)= 12 � � � = 12 = 12dgr by (9.3) (9:12)= � = dr �r � 12g� (9:13)1Using the notation of 
hapter 5, g = 
2(G) and r = 
2(R).89



Similarly: = dgr2= dr3= dr3= dr2(r � 12g)= 12dgr2= 12dg2r= 14dg2r

= 12dgr(r� 12g)= dr(r � 12g)2= dgr(r� 12g)= 14dg2r= 0= dr(r � 12g)(r � g)= dg2rUnfortunately, there are some order four (and higher) diagrams that 
annot beevaluated using these te
hniques. One su
h diagram is .The following table 
ontains the values of d, g, and r for some 
lassi
al Lie algebraswith their de�ning representations (and tab taken to be the matrix tra
e in thoserepresentations): G R d g rsl(N;C) CN N 2N N2 � 1Nso(N;C) CN N N � 2 N � 12sp(N;C) C2N 2N 2(N + 1) N + 12Remark One 
an 
he
k that if G is a real Lie algebra and GC is its 
omplexi�
ationthen CG � CGC. Therefore the above table 
an be used to evaluate d, g, and r for anyof the real forms of sl(N;C), so(N;C), or sp(N;C) in their de�ning representations.
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9.5 Complete evaluation for the 
lassi
al algebrasBy the remark at the end of the previous se
tion, to 
al
ulate CG for the 
lassi
alalgebras (in their de�ning representations) it is enough to 
onsider the four 
omplex
lassi
al algebras.The �rst step is to use relation STU repeatedly, with ea
h usage redu
ing thenumber of G3 verti
es by one, until we are left with a diagram D that has no G3verti
es. The basi
 building blo
k of su
h diagrams is the tensorT �
�Æ = 6?�� 
Æab :This tensor will be evaluated expli
itly for ea
h of the 
omplex 
lassi
al algebras, andthe results will turn out to have representations in terms of diagrams that have nopropagators in them. Using this repeatedly, we are left with disjoint unions of 
ir
leswhi
h again are easy to evaluate expli
itly.I will show in detail the 
omputations for so(N;C), and just state the results forgl(N;C), sl(N;C), and sp(N;C).9.5.1 The algebra so(N;C).A 
onvenient 
hoi
e of generators for so(N;C) are the N � N matri
es Mij (i < j),given by (Mij)�� = Æi�Æj� � Æi�Æj�:That is, the ij entry of Mij is +1, the ji entry of Mij is �1, and all other entriesof Mij are zero. The invariant bilinear form that we pi
k on so(N;C) is the matrixtra
e in the de�ning representation, and sot(ij)(kl) def= tr(MijMkl) = �2ÆikÆjl:Inverting the N(N�1)2 � N(N�1)2 matrix t(ij)(kl) we gett(ij)(kl) = �12ÆikÆjl; (9.14)and so T �
�Æ = Xi<j;k<l t(ij)(kl)(Mij)��(Mij)
Æ: (9.15)Using (9.14) and some algebrai
 manipulations we 
an simplify (9.15), and then rep-resent it by a diagram:(9.15) = 12(Æ�ÆÆ�
 � Æ�
Æ�Æ) = 12 0BBBB� & %$'�� 
Æ� �������������� 
Æ1CCCCA : (9.16)91



The last thing to note is thatCso(N;C)(k disjoint 
ir
les) = Nk:Example For so(N;C) in its de�ning representation we 
an 
al
ulate d, r, and gusing: (suppressing the `Cso(N;C)' symbols)d = = Ndr = = 12 � � � = N(N � 1)2dr �r � 12g� = = 14 � 12 + 14 = N(N � 1)4 :9.5.2 The algebra gl(N;C).Similar 
onsiderations lead to the even simpler rule6?�� 
Æ(kl)(ij) = & %$'�� 
Æ;while retaining Cgl(N;C)(k disjoint 
ir
les) = Nk:Example For gl(N;C) in its de�ning representation= � = � = N(N2 � 1)9.5.3 The algebra sl(N;C).The rule here is 6?�� 
Æ(kl)(ij) = & %$'�� 
Æ� 1N �� 
Æ;with the usual Csl(N;C)(k disjoint 
ir
les) = Nk:Example For sl(N;C) in its de�ning representation we 
an 
al
ulate d, r, and gusing: d = = Ndr = = � 1N = N2 � 1dr �r � 12g� = = � 2N + 1N2 = 1�N2N :92



9.5.4 The algebra sp(N;C).This is the most 
ompli
ated 
ase. Let D be a diagram with no G3 verti
es. The
omputation of Csp(N;C)(D) now pro
eeds in two steps:1. Mark ea
h Wilson loop segment in D with either the symbol P or the symbolQ, in su
h a way that the number of P 's entering ea
h subdiagram of D of theform is equal to the number of P 's leaving it. (Remember that the Wilsonloops are dire
ted).2. Simplify D using the following rules:6? PPPP = 6? QQQQ = 126? PPQQ = 6? QQPP = �126? QPQP = 6? PQPQ = 12 0B� + 1CA :3. Similarly to the usual,Csp(N;C)(k disjoint marked 
ir
les) = Nk:(Noti
e that this time dimR = 2N 6= N).Example For sp(N;C) in its de�ning representation we 
an 
al
ulate d, r, and gusing: d = ="!# P +"!# Q = 2Ndr = ="!# PP +"!# QQ + 2"!# QP= 212 + 0B� + 1CA = 2N �N + 12�dr �r � 12g� = = 2 PPP P + 4 QQP P= 12 � 0B� + 1CA = �12N(1 + 2N)93



Exer
ise The reader might �nd it amusing to verify that Csp(1;C) � Csl(2;C), asexpe
ted from the isomorphism sp(1;C) �= sl(2;C). Noti
e that Cso(3;C) is not equalto Csp(1;C) (or Csl(2;C)) be
ause their de�ning representations are not the same.9.6 Appendix: The Vassiliev knot invariants9.6.1 Taking the logarithmIn this appendix we will assume that F is a �eld of 
hara
teristi
 zero and that R isan irredu
ible representation of G.De�nition 2 Let A be the ve
tor spa
e of (in�nite) formal linear 
ombinations (with
oeÆ
ients in F) of (graph-) isomorphism types of 
losed diagrams having I = 1, (i.e.
ontaining exa
tly one Wilson loop), with a pre-
hosen base point on that loop. For
onvenien
e, we will ex
lude the trivial diagram from A. For example, here arethe six simplest generators of A: :In fa
t, A 
an be made into an algebra; the produ
t of A 2 A and B 2 A willessentially be the sum of all the possible ways of merging them into a single diagram:De�nition 3 Let A be a generator of A, and let a1; a2; : : : ; an be the list of R2Gverti
es in A, in the order they are en
ountered when one travels along the loop
onsistently with its orientation and beginning from the base point. Let B be anothergenerator of A, and de�ne b1; b2; : : : ; bk in the same way. Let P be the set of all possiblelinear orderings of n \a" symbols and m \b" symbols. For every P 2 P de�ne [AB℄Pto be the diagram obtained by marking a based Wilson loop with a's and b's followingtheir order in P , and 
onne
ting diagrams A and B (minus their respe
tive loops) tothat Wilson loop following the marks in the obvious way. Finally, de�neA �B = XP2P [AB℄P :For an example, see �gure 9.9.
+ +2 22=. Figure 9.9. Taking the produ
t in A94



Claim 4 The algebra A is asso
iative and 
ommutative. 2Now let Z 2 A be Z = d+ Xgenerators of ACG(D) �D; (9.17)and let W 2 A be the formal logarithm of Z,W = logZ;given by the formal power series expansionW def= log d+ 1Xm=1 (�1)m+1 (PD CG(D) �D)mmdm : (9.18)Noti
e that the order of A � B is always bigger than that of A or B, and so everydiagram D appears in the above in�nite sum only �nitely many times, and hen
e Wis well de�ned.De�nition 4 De�ne C 0G(D) to be the 
oeÆ
ient of D in W. Namely, de�ne it by theequation W = log d+XD C 0G(D) �D:Remark It is easy to 
he
k that the weight of a diagram is independent of theposition of its base point, whi
h was introdu
ed only for the sake of simplifyingde�nition 3. Therefore, base points will be suppressed from now on.De�nition 5 Let D be a generator of A. A `
y
li
 partition' of D will be a 
y
li
lyordered (that is, ordered up to a rotation) partition D = fD1; D2; : : : ; Dk(D)g of theset of all propagators of D into disjoint subsets, su
h that for any propagator p 2 Di,all the propagators 
onne
ted to p by a G3 vertex will also be in Di. Given su
ha partition, we will denote by the same letter Di the generator of A obtained byreinserting the Wilson loop of D around Di.Claim 5 The weight C 0G(D) of a generator D of A is given in the following formula:C 0G(D) = X
y
li
 partitions D (�1)k(D)+1dk(D) k(D)Yi=1 CG(Di): (9.19)Proof This is simply a sum over all the possible ways of writing D as a produ
t inA, with the 
oeÆ
ients taken 
orre
tly as in (9.18). The fa
t that we are restri
tingour attention to \
y
li
 partitions" 
orresponds to the fa
tor 1m in that equation. 295



Lemma 9.6.1 Let D be a generator of A whi
h 
an be de
omposed (in the sense ofde�nition 5) into two parts su
h that:1. The two parts 
an be separated from ea
h other by 
utting the Wilson loop of Dat just two points.2. At least one of the parts 
annot be de
omposed any further.In this 
ase, C 0G(D) = 0: (9.20)(For an example, see �gure 9.10).

Figure 9.10. An example for a diagram with C 0G(D) = 0Proof Let D = A[B be a diagram de
omposed into two non-empty separated partssu
h that A 
annot be be de
omposed any further. WriteC 0G(D) = X
y
li
 partitions D 
0(D) ; 
0(D) = (�1)k(D)+1dk(D) k(D)Yi=1 CG(Di):We will prove (9.20) by �nding a �xed point free involution D ! �D of the set of all
y
li
 partitions of D for whi
h 
0(�D) is always the negative of 
0(D).Let D = fD1; D2; : : : ; Dk(D)g be a 
y
li
 partition ofD. There are two possibilities:1. A is one of the Di's. In this 
ase, de�ne �D to be the 
y
li
 partition obtainedby adjoining A to the 
omponent of D pre
eding it in D. It is 
lear thatk(�D) = k(D)� 1, and therefore using lemma 9.3.2 we �nd 
0(�D) = �
0(D).2. A is properly 
ontained in one of the Di's. We may assume that A is properly
ontained in D1. De�ne �D = fD1 � A; A; D2; : : : ; Dk(D)g. It is 
lear thatk(�D) = k(D) + 1, and therefore using lemma 9.3.2 we �nd 
0(�D) = �
0(D).It is 
lear that � is a �xed point free involution. 2Remark It is easy to show that the se
ond requirement of the above lemma issuper
uous | even if one of the parts of D is still de
omposable one 
an always userelation STU to express that part as a sum of open diagrams, ea
h of whi
h is either`less de
omposable' or `more separable' (i.e. 
an be separated in the sense of the �rstrequirement of the above lemma into two smaller parts).96



Claim 6 The relations (9.5) and (9.6) hold for the C 0G(D)'s as well:C 0G(�I) = C 0G( �H)� C 0G( �X); (9.21)C 0G( �S) = C 0G( �T )� C 0G( �U): (9.22)Proof (9.5) is a linear relation, and it is respe
ted by ea
h term in the sum (9.19).Therefore (9.21) holds. The same is true for (9.22), only that �T and �U have 
y
li
partitions whi
h do not 
orrespond to 
y
li
 partitions of �S | these are the ones inwhi
h the two propagators in T or in U of �gure 9.4 appear in di�erent 
omponents.There is natural 
orresponden
e � between those ex
eptional partitions of �T and thoseof �U , and 
learly 
0(�D) = 
0(D) for every ex
eptional partition D of �T . The minussign in (9.22) then shows that these ex
eptional partitions 
an be disregarded. 2Remark The algebra stru
ture of A 
an be used to de�ne an algebra stru
ture onthe spa
e C of all weight systems. Let the generating fun
tion ZC of a weight systemC be as in (9.17), ZC = d+ Xgenerators of AC(D) �D;and for C1;2 2 C de�ne their produ
t C1 � C2 byZC1�C2 = ZC1 � ZC2 :The above proof is essentially a veri�
ation of the fa
t that ZC1�C2 is indeed thegenerating fun
tion of a weight system that satis�es the relations IHX and STU .Example The following weights 
an be easily 
omputed using (9.19):C 0G( ) = rC 0G( ) = grC 0G( ) = 12grC 0G( ) = � 12grC 0G( ) = 12g2rC 0G( ) = 14g2r
C 0G( ) = � 14g2rC 0G( ) = 14g2rC 0G( ) = � 12g2rC 0G( ) = 14g2rC 0G( ) = 12g2rC 0G( ) = g2rIt is easy to 
he
k that all the other diagrams of order � 3 have a vanishing C 0G.97



9.6.2 The Vassiliev knot invariantsIn [41℄ Vassiliev 
onsidered the spa
e M of all the possible embeddings of the ori-ented 
ir
le S1 in an oriented R3 as a subspa
e of the spa
e of all smooth mapsS1 ! R3, analyzed the possible singularities of su
h maps, and using that infor-mation 
onstru
ted a �ltration of M and a spe
tral sequen
e that 
onverges to its
ohomology. The 
onne
ted 
omponents of M 
orrespond simply to oriented knottypes, and therefore ea
h element of H0(M) is a knot invariant. Vassiliev then useshis topologi
al ma
hinery to partially 
ompute H0(M), and based on his ma
hinery,Birman and Lin [10℄ arrived at the following properties whi
h a numeri
al invariantVi of oriented knots that 
omes from the i's level of Vassiliev's �ltration has to satisfy:1. Vi has an extension (whi
h I will also denote by Vi) to an invariant of smoothimmersed 
ir
les, whi
h are allowed to have �nitely many transversal self-interse
tion. We will 
all su
h immersed 
ir
les embedded graphs.2. Vi( ) = 0.3. Over
rossings, under
rossings and self-interse
tions are related by:Vi( )� Vi( ) = Vi( ): (9.23)This relation will be 
alled the 
ip relation. (As usual in knot theory, when wewrite , or , we think of them as parts of bigger graphs whi
h areidenti
al outside of a small sphere, inside of whi
h they look as in the �gures).4. If a graph G has more than i self-interse
tions, then Vi(G) = 0.The third and fourth properties taken together imply that if a graph G has exa
tlyi self-interse
tion, than Vi(G) depends only on the abstra
t graph underlying G, andnot on its embedding. Su
h a graph will be 
alled saturated. A simple way of repre-senting su
h a graph is by the diagram underlying it, whi
h is obtained by drawing a
ir
le in the plane 
orresponding to the parameterization of G, and 
onne
ting using adashed line every two points of that 
ir
le whi
h are identi�ed in G. For an example,see �gure 9.11.
�!Figure 9.11. The diagram 
orresponding to a saturated graph with i = 2Example A somewhat tautologi
al example is easily derived from the Conway poly-nomial [19, 31℄. Fix i > 0, let G an embedded graph with j self-interse
tions, and let98



K1; : : : ; K2j to be the 2j possible resolutions of G | the 2j knots obtained by repla
-ing ea
h of the j self-interse
tions in G by either an over
rossing or an under
rossing.Let �(K)(z) be the Conway polynomial of a knot K, and de�neV �i (G) def= 
oeÆ
ient of zi in 2jXm=1(�1)# of under
rossings in Km � �(Km)(z): (9.24)I have already de�ned V �i for graphs, and there is nothing to 
he
k for property 1.Property 2 is the fa
t that � � � = 1 is independent of z, and property 3 is trivialfrom the de�nition (9.24). By the de�ning relation of the Conway polynomial� � �� � � � = z � � � �and property 3, it follows thatV �i � � = V �i�1 � � ;and this proves that if j > i then V �i (G) = 0, as required in property 4. Using theresults of the previous se
tion one 
an 
he
k that if G is a saturated graph and D isits 
orresponding diagram, then V �i (G) is equal to the 
oeÆ
ient of N in Csl(N;C)(D).We saw that underlying the Vassiliev invariants there is an assignment of weightsto a 
ertain 
olle
tion of diagrams, D! Vi(D), just like the assignments CG and C 0G.The Vassiliev assignments are not arbitrary | they have to satisfy 
ertain 
onsisten
y
onditions: (These 
onditions were �rst written expli
itly by Birman and Lin in [10℄)Claim 7 Whenever four diagrams S, E, W , and N di�er only as shown in �g-ure 9.12, their weights satisfyVi(S)� Vi(E) = �Vi(W ) + Vi(N): (9.25)
S NWEFigure 9.12. The diagrams S, E, W , and N . (The dotted ar
s represent partsof the diagrams that are not shown in the �gure. These parts are assumed tobe the same in the four diagrams)Proof Let SW be the almost saturated (i.e. having i � 1 self-interse
tions) graphshown (partially) in �gure 9.13. Pie
es of the x and y axes near the origin serve asar
s in that graph, as well as a third line z0 parallel to the z axis but transversingthe x� y plane South-West of the origin. Let NE be the same, only with the third99



line z0 moved to transverse the x � y plane North-East of the origin. There are twoways to 
al
ulate Vi(NE) in terms of Vi(SW ) and the weights of saturated graphsusing the 
ip relation | by moving z0 from SW to NE along the two dotted pathsin �gure 9.13. The two ways must yield the same answer, and therefore the foursaturated graphs 
orresponding to z0 interse
ting the x and y axes South, East, Westand North of the origin have diagrams whose weights are related. With the sign
onvention of (9.23), this relation is seen to be (9.25). 2
z’

S

N

EW

y

x

Figure 9.13. The graph SW and the two ways of getting from it to NE. Noti
ethat z0 is perpendi
ular to the plane and therefore appears as a single dot.It is easy to see that the weight systems CG and C 0G satisfy the relation (9.25).Simply use the relations (9.6) and (9.22) in two di�erent ways (marked 1 and 2) onthe diagram:
1

2Claim 8 (Birman-Lin) If a diagram D 
ontains a dashed line whose endpoints onthe 
ir
le are not separated from ea
h other by an endpoint of any other line in D,then Vi(D) = 0.Proof An embedded graph G whose 
orresponding diagram is D would have a kink. By the 
ip relation (9.23), Vi(G) = Vi(Go)�Vi(Gu), where Go (Gu) is a versionof G in whi
h the kink was resolved to an over
rossing (under
rossing). But Go andGu are isotopi
, and therefore Vi(G) = 0. 2It is a trivial 
onsequen
e of lemma 9.6.1 that The weights C 0G satisfy the relationin 
laim 8.We have just solved a problem posed by Birman and Lin in [10℄ | to �nd non-trivial solutions to the relations in the last two 
laims.100



Chapter 10Perturbation theory beyond twoloopsFollowing Witten [47℄, I will sket
h here how we expe
t the perturbation theory ofthe Chern-Simons gauge theory to behave on a general three manifold and to higherorder in 1=k.In [42, 43℄ Witten used very di�erent te
hniques than those presented here to�nd a 
omplete non-perturbative de�nition of the Chern-Simons gauge theory. Thepart of his solution that is relevant for making a 
omparison with the results provenhere was reviewed in the previous 
hapter, and that 
omparison showed a 
ompleteagreement between the two approa
hes. The solution involves three subtleties thatare hard to predi
t by just observing the de�nition of the theory in equation (1.2):1. Links have to be framed. A

ording to Witten's solution W(M3;X ; k) 
annotbe de�ned as it is for a bare link X , but one also has to 
hoose a framing forea
h of the 
omponents of X and only then W(M3;X ; k) 
an be de�ned. Itsde�nition will then depend on the 
hoi
e of the framing in a pres
ribed manner.This point was explained in some more detail in the 
hapter 5.2. Three-manifolds have to be framed. A

ording to Witten's solutionW(M3;X ; k)
annot be de�ned as it is for a bare three-manifold M3, but one also has to
hoose a framing for M3 | a 
hoi
e up to homotopy of a trivialization ofthe tangent bundle of M3, and only then W(M3;X ; k) 
an be de�ned [44, 3℄.(A
tually, something a little less than a framing of M3 is enough [44, 3℄{it isenough, roughly speaking, to have a framing modulo torsion.) Its de�nition willthen depend on the 
hoi
e of the framing in a pres
ribed manner. As we wereworking on a 
at R3 we have not en
ountered this subtlety in this paper. We
an 
onsider this subtlety and the previous one as 
ases of a broken symmetry| as framings do not at all appear in (1.2) it is trivialy invariant under a 
hangeof framing and this symmetry is broken in Witten's solution.3. Analyti
ity near k = 1 is lost.1 Naively one sees that as k ! �k in (1.2),1Some authors [26, 27℄ dispute this point, whi
h is usually referred to as \the shift in k". It is101



W(M3;X ; k) transforms to its 
omplex 
onjugate. This property ofW togetherwith analyti
ity near k =1 means that we expe
t the even powers in the 1=kasymptoti
s of W to be real and the odd ones to be imaginary. This propertyis lost in Witten's solution as 
an 
learly be seen from equations (6.1), (6.2),(6.3) and (6.5) in whi
h k always appears `shifted' by N .All of the above mentioned subtleties seem not to appear in a naive Feynman-diagrammati
 expansion of W, and the purpose of this 
hapter is to show how thesepoints probably do appear in perturbation theory after all.Formally writing down the sums of Feynman diagrams that we expe
t to yieldhigher three-manifold and link invariants and translating them into �nite dimensionalintegrals is routine and easy. It is also not hard to produ
e a formal invarian
eproof for these integrals as explained in 
hapter 7, ignoring the analyti
al diÆ
ultiesarising from the divergen
e of those integrals. We will see below how resolving theseanalyti
al diÆ
ulties is likely to explain the three subtleties listed above.The origin of the above mentioned analyti
al diÆ
ulties is the singularities Greens'fun
tions have near the diagonal. These get milder for higher order di�erential op-erators. This suggests trying to regularize (1.2) by adding higher order terms to theLagrangian preserving as mu
h symmetries as possible so as not to spoil the metri
independen
e argument of 
hapter 7. (Physi
ists 
all su
h a pro
edure Pauli-Villarsregularization.) The main ingredient of this argument is BRST invarian
e (lemma3.1), and if we wish to preserve it we 
an only add terms that preserve gauge invari-an
e. The only su
h term of order two is the square of the norm of the 
urvature ofthe 
onne
tion A and therefore we will make the repla
ementLtot ! Lregularized def= Ltot + �jjFAjj2:(In fa
t, to preserve the ellipti
ity of the quadrati
 part of Lregularized one also hasto 
hange the gauge-�xing term of Ltot and this for
es 
hanging Q slightly. Makingthose 
hanges is easy and does not a�e
t the rest of our reasoning, so we will ignorethem.)Let as now pretend that Lregularized gives rise to a �nite perturbation theory. (A
-tually, this is true ex
ept for the role of a few low order subdiagrams.) What willremain of the invarian
e argument (7.6)?Lemma 3.1 and lemma 3.3 will still hold be
ause we have preserved gauge invari-an
e, but as the additional term in Lregularized is metri
 dependent, lemma 3.2 will notbe true any more. Instead, the variation of Lregularized under gij ! gij + Ægij will begiven by ÆLregularized = Q� + �ÆjjFAjj2and therefore in the notations of (7.6) we will haveÆhOi� = �hOÆjjFAjj2i� (10.1)very likely that in the 
ontext of the regularization suggested below no 
hanges need to be made tothe assertions in this paper. 102



where the subs
ript � in h � i� is meant to remind us that we are taking expe
tationvalues with respe
t to a Lagrangian that depends on �. Of 
ourse, equation (10.1) (andequations (10.2)-(10.5) as well) should be understood as an equality of perturbativeasymptoti
 expansions, and its proof will be based on (7.6) as explained in 
hapter7. If hOi� had a limit as �! 0 and hOÆjjFAjj2i� was bounded as �! 0 we 
ould havetaken this limit and it would have been metri
 independent. One 
annot expe
t thisto be true. However, the divergen
es in hOÆjjFAjj2i� for �! 0 originate from a veryde�nite type of 
ontribution to the Feynman diagrams, and by 
onsidering how su
hdivergen
es 
an originate, one 
an obtain results that are nearly as good as the naiveresults that would have held if there were no divergen
es. In explaining this, we will
onsider the basi
 
ase O = 1.It is 
onvenient to 
onsider only the 
onne
ted Feynman diagrams and as is wellknown [36, 21, 29℄ the sum of those is just logh1i�. Divergen
es in Feynman diagram-mati
 
ontributions to logh1i� and toÆ (logh1i�) = �hÆjjFAjj2i�h1i� (10.2)
ome from a region of integration in whi
h all integration points are separated bydistan
es of order �. This means that the divergen
es 
an be expanded in termsof lo
al di�erential geometri
 invariants { the metri
, the 
urvature tensor, and its
ovariant derivatives. This expansion is analogous to the short time expansion of theheat kernel. The most general divergent terms are of the formlogh1i� = 
1�3V + 
2� R + �nite terms (10.3)and hÆjjFAjj2i�h1i� = 
1�4 ÆV + 
2�2 ÆR + 
3� ÆC + �nite terms: (10.4)Here 
1, 
2, and 
3 are 
onstants (or more exa
tly fun
tions of k only, whi
h must be
omputed order by order in perturbation theory, but do not depend on the parti
ularthree manifold or metri
). Also, V is the volume of M3, R is the integral over M3 ofits s
alar 
urvature, C is the Chern-Simons number asso
iated with the Levi-Civita
onne
tion and ÆV , ÆR, ÆC are the variations of these quantities with respe
t togij ! gij + Ægij. The expansion (10.4) is determined by the following prin
iples. (i)The terms on the right hand side must be 
losed one forms on the spa
e of metri
s(sin
e the left hand side of the equation has this property.) (ii) The 
oeÆ
ients ofthese 
losed one forms must be lo
al fun
tionals of the metri
. What has been writtenon the right hand side of equation (10.4) is the most general expression with theseproperties. The general prin
iples do not determine 
1; 
2, and 
3, whi
h from thispoint of view must simply be 
omputed order by order in perturbation theory.Equation (10.4) means that h1i� does not 
onverge as � ! 0 to a topologi
alinvariant. Indeed its variation (10.2) not only does not vanish as � ! 0; it diverges103



in this limit. If, however, we de�ne2Wrenormalized = h1irenormalized def= exp lim�!0�logh1i� � 
1�3V � 
2� R� 
3C� (10.5)then (10.3) shows that Wrenormalized is �nite while (10.1) and (10.4) shows that it isan invariant. Here we see where the framing of M3 
omes in | to de�ne C we must�rst pi
k a trivialization of the tangent bundle and so the invariants that we havejust produ
ed depend on a 
hoi
e of su
h a trivialization.Noti
e that ÆC, in equation (10.4) does not depend on the 
hoi
e of a framing,but C does. What is entering here is 
learly a sort of lo
al 
ohomology of the spa
eof metri
s. The lo
al, 
losed one forms ÆV , ÆR appearing in (10.4) 
an be writtenas variations (exterior derivatives) of lo
al fun
tionals of the metri
. But ÆC, thoughitself a lo
al fun
tional and a 
losed one form, 
annot be written as the variation ofa lo
al fun
tional. (If ÆC were itself not lo
al, it 
ould not arise in the intrinsi
 lo
alevaluation of Feynman diagrams that leads to equation (10.4).)Similarly, in the 
ase of a non-empty link X we do not expe
t that the higherorder Feynman diagrams will 
onverge to link invariants, but instead we expe
t themto 
onverge to something whose variation with respe
t to a deformation of X will beequal to some 
onstant multiple of the variation of the total torsion of X . (The torsionwill enter just as the Chern-Simons number C entered in the above dis
ussion.) Thetotal torsion 
an then be subtra
ted out yielding link invariants at the pri
e of havingto introdu
e a framing for X | the total torsion 
an be de�ned only given su
h aframing. This agrees with the results of Witten and with the results in 
hapter 3.Unfortunately, we were just pretending that the theory de�ned by Lregularized is�nite. In fa
t, it is not. One 
an �gure out how badly divergent the theories de�nedby Ltot and Lregularized are by taking a diagram with a spe
i�ed number of verti
esand ar
s, measuring the total degree of singularity of the ar
s and verti
es, andsubtra
ting the number of integrations that the verti
es indu
e. The result, the so-
alled \super�
ial degree of divergen
e" � of a diagram with EB external gauge lines,EF external ghost lines and L internal loops is�(Ltot) = 3� EB � 12EF ; �(Lregularized) = 4� L� EB � EF : (10.6)Clearly, the regularized theory is less divergent than the original one, but (10.6)shows that even in the regularized theory the diagrams with a small number of loopsand external lines will be divergent and as these diagrams appear as subdiagrams indiagrams with higher 
omplexity we 
annot just ignore them. One 
an 
he
k that2This is 
onsistent with what is usually 
alled renormalization - it just 
orresponds to adding� 
1�3 V � 
2� R � 
3C to the original Lagrangian as the limit � ! 0 is taken. In fa
t, the aboveparagraph 
an be summarized by saying that these three terms are the only possible lo
al BRSTinvariant additions to the Lagrangian whi
h are of the right dimension. Noti
e that all three termsdepend on the metri
 alone and not on the �elds, and therefore the n-point fun
tions of the theoryare not renormalized and thus no 
are needs to be taken of the renormalization of lower orderdiagrams when 
onsidering the renormalization of a �xed order in perturbation theory.104



even if higher terms than �jjFAjj2 are added to Ltot and even when 
onsidering theredu
tion in the divergen
e that 
omes from gauge invarian
e3 one loop diagramswith one, two , or three external legs will remain divergent in the resulting theory.Yet, we believe that the following is true:Conje
ture 1 (Witten, [47℄) The analysis in (10.3), (10.4), and (10.5) 
an be jus-ti�ed, and the resulting invariants Wrenormalized 
oin
ide with the expansion in powersof 1=k of the results in [42, 43℄.One-loop diagrams in the Chern-Simons theory have been regularized using �-fun
tion regularization in [42, 7℄ and in 
hapter 5 of this thesis, and using Pauli-Villars regularization in [2℄. In both these regularizations the `shift in k' is observed
onsistently with the above 
onje
ture.

3Q�
 = �, and therefore h�(x)�(y)i = 0. This together with the stru
ture of the �B propagatorproves that the amputated two-point fun
tion is given by ?LdL of a (1; 1)-form whose 
onvergen
eproperties are by one degree better. For a similar example, see e.g. [12, pp. 299-300℄.105
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