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Abstract

[This version is still being edited and should be considered preliminary.]
Given a compact manifold with an action of a torus T with isolated fixed points and with a
T equivariant stable complex structure, the isotropy weights at the fixed points satisfy certain
identities that are obtained by applying the ABBV localization formulae to the fixed point sets
of closed subgroups of T with prescribed isotropy representation on the normal bundle. We
formulate the “realization challenge” – the question whether every list of abstract fixed point
data that satisfies these identities can be obtained in this way. When the dimension of the
manifold is 2 or 4 and the torus action is locally standard, we obtain a positive answer from
an explicit construction. When the dimension of the manifold is arbitrary and the torus action
is locally standard, or, more generally, GKM, we obtain a positive answer.

1. Introduction: the “realization challenge”
Much of the information about a smooth action on a manifold can be extracted from the isotropy
representations on the tangent spaces to the fixed points of the action. The representations that
occur are not independent; the topology of the manifold dictates relations between them. In
particular, the Atiyah–Bott–Berline–Vergne fixed point theorem, applied to characteristic classes
of the tangent bundle and normal bundles of isotropy strata, imposes a list of conditions that
the weights of the representations must satisfy. We ask conversely whether, given a finite list
of representations that satisfy these conditions, it necessarily arises as fixed-point data for some
torus action on a manifold. Schematically, we observe there is a map

torus actions on manifolds ÝÑ isotropy data satisfying certain conditions

and ask whether we can construct a section.
To describe our notion of isotropy data precisely, we will need a well-defined notion of weights,

and for this we will equip the manifolds we consider with an equivariant stable complex structure
(we lay out this and other necessary background in Section 2). To make this one level more
precise, let T be a torus and consider a family pXp, σpqpPP indexed by a finite set P, where each
Xp is a multiset consisting of pdim Tq elements of HompT, S1qzt1u and each σp is 1 or ´1.

Conjecture 1.1. Given abstract isotropy data pXp, σpqpPP satisfying all relations obtained from
ABBV, there exists a compact oriented stably complex T-manifold M whose fixed point set MT

can be identified with P in such a way that the weights of the isotropy representation on Tp M are
Xp and the orientation on Tp M inherited from M agrees with the orientation on Tp M induced by
the stable complex structure precisely when σp “ 1.
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A more precise statement involves spelling out these relations, and can be found in Prob-
lem A.1. The amount of data to be dealt with in general is substantial, and here we deal only
with the case of a GKM action, where we show the answer to be in the affirmative.

Theorem A. Given GKM abstract isotropy data pXp, σpqpPP satisfying (2.5), there exists a compact,
oriented, stably complex GKM T-manifold M whose abstract isotropy data is pXp, σpqpPP.

When M is 2-dimensional this result is encapsulated in known examples, as we discuss in
Section 3, and when M is 4-dimensional, we provide an explicit construction in Section 4. The
proof of Theorem A is in Section 5, and in Appendix A we discuss what the conjecture should
look like in the general case.

Acknowledgments: The impetus for this work was an earlier, uncirculated preprint of the third
author joint with Viktor L. Ginzburg and Susan Tolman. The authors thank Alastair Darby and
Nigel Ray for helpful conversations.

2. Definitions and set-up
In this section we establish notation, definitions, and a few lemmas. As there are differing con-
ventions for some terms, we go into more detail than we might otherwise.

Notation 2.1. In all that follows we denote by T a compact torus of real dimension k, i.e., a Lie
group isomorphic to a finite product Up1qk of circle groups, and by M an orientable smooth
manifold of real dimension 2n equipped with a smooth T-action.

Definition 2.2. An orientation of a real vector bundle V Ñ B is a smoothly varying choice of
orientation of each fibre. Explicitly, if FrpVq ÝÑ B denotes the frame bundle of V and GL`pVq
the identity component of the group GLpVq of bundle automorphisms of V over idB, then an
orientation of V, if one exists, is a global section of the bundle FrpVq{GL`pVq Ñ B. A (fibrewise)
complex vector bundle V Ñ B is a real vector bundle equipped with a (fibrewise) complex struc-
ture, meaning an automorphism J of bundles over B such that J2v “ ´v for each v P V. It follows
each fibre of a complex vector bundle is a complex vector space under i ¨ v :“ Jv. A almost com-
plex manifold is a smooth manifold M together with a complex structure on its tangent bundle
TM Ñ M.

Any vector space of real dimension 2` equipped with a complex structure J admits a basis
with respect to which J is a block-diagonal matrix with blocks

“ 0 ´1
1 0

‰

, which is to say GLp2`,Rq
acts transitively by conjugation on the space of complex structures, and one checks the stabilizer
is the subgroup GLp`,Cq under the standard embedding. It follows a complex structure on a real
vector bundle V Ñ B of rank 2` can be identified with a section of the GLp2`,Rq{GLp`,Cq-bundle
FrpVq{GLp`,Cq ÝÑ B associated to the frame bundle.

An isomorphism of complex vector bundles is an isomorphism of real bundles intertwining
the complex structures. A T-equivariant complex vector bundle π : V Ñ B is a complex vector
bundle equipped with T-actions on V and B such that π is T-equivariant and the map V ÝÑ V
induced by each element of T is an automorphism of complex vector bundles. It follows that a T-
equivariant complex structure can be identified with a T-equivariant global section of the bundle
FrpVq{GLpn,Cq ÝÑ B. Given a complex vector bundle V Ñ B a local section pv1, . . . , vnq of the
complex frame bundle FrpVq Ñ B determines the local section pv1, Jv1, . . . , vn, Jvnq of the real
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frame bundle FrpVRq Ñ B and hence an ordered basis at each fiber, inducing what is called the
complex orientation of V. Specializing to the case of the tangent TM Ñ M to a smooth manifold,
this means an almost complex structure on M determines an orientation of M, again called the
complex orientation.

We denote by Cα the one-dimensional complex representation determined by a homomor-
phism α P HompT, S1q. Reciprocally, we call such an α the weight of a one-dimensional repre-
sentation isomorphic to Cα. We always write the operation in HompT, S1q additively, so that,
particularly, ´α is the composition of α and complex conjugation S1 ÝÑ S1.

Given a manifold M with a T-action, a T-equivariant stable complex structure on M is the
equivalence class of a T-equivariant complex structure on some stabilization TM ‘ Rr of its
tangent bundle, where T acts on TM by the tangent action and trivially on Rr. Two such complex
structures J1 on TM ‘Rr1 and J2 on TM ‘Rr2 are defined to be equivalent if there exist non-
negative integers s1, s2 and a smooth T-equivariant isomorphism

pTM‘Rr1 , J1q ‘Cs1 „
ÝÑ pTM‘Rr2 , J2q ‘Cs2

of complex vector bundles over M, where the stabilizing trivial bundles Cs1 and Cs2 each carry
the standard complex structure.The manifold M, equipped with such structures, is called a stably
complex T-manifold. Note that the choice of a stable complex structure on M does not determine
an orientation of M.

Remark 2.3. As real T-representations Cα and C´α are isomorphic, but as complex representations
they are not. This distinction is important, as it means the weights of irreducible factors are
defined for isotropy representations on a stably complex T-manifold.

Stable complex structures behave well under restriction to fixed-point submanifolds.

Proposition 2.4. Let H be a closed subgroup of T and N a connected component of the set MH of H-fixed
points of M. An orientation of M induces an orientation on N. A T-equivariant stable complex structure
on M induces a unique T-equivariant stable complex structure on N and a unique T-invariant complex
structure on the normal bundle νMN to N in M. An orientation on M thus uniquely determines an
orientation on N. Moreover, if H is contained in another closed subgroup K of H and P is a connected
component of NK, then the T-equivariant stable complex structure on P induced from N agrees with that
induced directly from M, the T-equivariant complex structures on normal bundles are compatible in the
sense that

0 Ñ νN P ÝÑ νMP ÝÑ pνMNq|P Ñ 0 (2.1)

is a short exact sequence of complex vector bundles over P, and the orientation on P inherited from N
agrees with that inherited directly from M.

Proof. Fix a representative pTM‘Rr, Jq of an equivariant stable complex structure on M. Restrict-
ing, we obtain a T-equivariant complex vector bundle pTM‘Rr

q|N over N whose H–fixed point
set is the subbundle TN ‘ pRr

|Nq. This is in fact a complex subbundle, as J commutes with the
tangent action of H on TM, and so we also obtain a complex structure on the quotient bundle.
The inclusion TM|N ãÝÝÑ pTM‘Rr

q|N induces a T-equivariant bundle isomorphism

νMN “
TM|N

TN
„
ÝÑ

pTM‘Rr
q|N

TN ‘ pRr
|Nq
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and hence a T-equivariant complex structure on the normal bundle νMN. It can be checked that
complex structures on stabilizations of TM representing the same equivariant stable complex
structure on M give rise to the same equivariant stable complex structure on N and the same
invariant complex structure on νMN. The given fibrewise orientation on TM and the complex
orientation on νMN uniquely induce a fibrewise orientation on the kernel TN of the bundle map
TM|N νMN.

The statement about restriction of equivariant stable complex structures follows again from
the fact J commutes with the tangent action of each element of T. The exact sequence (2.1) of
normal bundles follows from the third isomorphism theorem:

pνMNq|P –
pTM‘Rr

q|N

TN ‘Rr

ˇ

ˇ

ˇ

ˇ

P
–

TM|P ‘RrM

TP‘Rr

TN|P ‘RrM

TP‘Rr
–

νMP
νN P

.

The transitivity of induced orientations follows from this sequence.

We filter a T-manifold not only by its stabilizers but by its isotropy representations.

Definition 2.5. Given a complex representation ρ : H ÝÑ Aut Vρ of a subgroup H of the torus T
with trivial invariant subspace pVρq

H, we define the corresponding isotypic submanifold Mρ to
be the closure in M of the set of points p whose stabilizer is equal to H and such that the isotropy
representation of H on Tp M{pTp MqH is isomorphic to ρ.

Remark 2.6. Note that given a equivariant stable complex structure on M, because every connected
component N of Mρ is a connected component of MH, such N are T-submanifolds of M, which
by Proposition 2.4 inherit T-equivariant stable complex structures, and whose normal bundles
in M are T-equivariant complex bundles. Particularly, if p is a fixed point, then the tangent
space Tp M “ νMtpu inherits an equivariant almost complex structure and hence a complex
orientation. By Proposition 2.4, this inherited orientation does not depend whether we view tpu
as a submanifold of M or of some isotypic submanifold Mρ.

Definition 2.7. Given a fixed point p of a stably complex T-manifold, the orientation on Tp M
induced by the stable complex structure on M is called the complex orientation. If M is oriented,
we write σp for the sign at p, chosen to be respectively 1 or ´1 depending whether the complex
orientation of Tp M agrees or disagrees with the chosen orientation of M.

The Atiyah–Bott–Berline–Vergne (ABBV) fixed-point theorem [BV82, AB84], given an oriented
T-manifold M, considers the pushforward map πM

! : H˚
TpMq Ñ H˚

Tpptq “ H˚pBTq in Borel equiv-
ariant cohomology and states that for any equivariant cohomology class c P H˚

TpMq, one has

πM
! c “

ÿ

NĎMT

πN
! pc|Nq

eTpνMNq
P H˚pBTq, (2.2)

where N ranges over components of the fixed point set MT and eT is the equivariant Euler
class. Part of the statement is the non-obvious fact that the right-hand side, a priori only lying
in some localization of H˚pBTq, indeed lies in H˚pBTq itself. The phrase “all ABBV identities”
in Conjecture 1.1 is an abstraction of the collection of all these statements, over all equivariant
cohomology classes c, where we replace M with every isotypic submanifold Mρ. The precise
statement is (A.1). For now, we focus on the GKM case.
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Definition 2.8. A stably complex Tk-manifold M2n is called a GKM manifold when

• the fixed point set MTk
is discrete and

• for each fixed point p, no two weights of the isotropy representation Tk ñ Tp M are collinear
in HompTk, S1q.

In this case, if ρ : H ÝÑ Aut Vρ is a representation of a subgroup H of codimension one, the
components N of a nonempty Mρ are 2-spheres N consisting of two points p, q of MT and a
complement N˝ foliated by orbits of a circle action α : T T{H „

ÝÑ S1. The normal bundle νMN˝

to this complement N˝ is a trivial bundle whose every fibre carries an H-representation we may
write as

Àn´1
j“1 Cβ̄ j

for some nonzero β̄ j P HompH, S1q. The isotropy representations at the poles
p and q can be written

Tp M – Cαp ‘
n´1
à

j“1
Cβ j,p , Tq M – Cαq ‘

n´1
à

j“1
Cβ j,q ,

where each of αp and αq is α or ´α and β j,p, β j,q P HompT, S1q restrict, for each j, to β̄ j P

HompH, S1q. Thus
β j,p ” β j,q pmod αq. (2.3)

Select an orientation of N at random. Both tangent spaces TpN and TqN are isomorphic to
Cα as real T-representations, but the orientation inherited from N may or may not agree with
the complex orientations. Remembering that we defined σp P t˘1u to be 1 just in the case of
agreement and applying (2.2) to c0 “ 1 P H0pNq, we get

0 “
ż

S2
1 “

1
eT
`

νNtpu
˘ `

1
eT
`

νNtqu
˘ “

1
α
`

1
´α

“
1

σpαp
`

1
σqαq

. (2.4)

When we collect abstract isotropy data in the form of isotropy representations at fixed points,
we also forget the 2-spheres N (edges of the GKM graph), and to find the minimal relations
abstract isotropy data must satisfy if it comes from a GKM action, we need to identify “potential
2-spheres” in the data. Taking (2.3) as the identifying condition for a potential 2-sphere, we are
motivated to define the sets Pρ in the following definition. The crucial condition (2.5) then follows
from summing (2.4) over endpoints of such potential 2-spheres.

Definition 2.9. Let k ď n be natural numbers and M2n a compact, oriented, stably complex Tk-
manifold with isolated fixed points. The isotropy data of M is pXp, σpqpPMT , where Xp is the
multiset of weights of Tp M and σp P t˘1u is 1 just if the orientation of Tp M agrees with the
orientation of

À

αPXp
Cα. Abstract isotropy data is simply a finite family pXp, σpqpPP such that

each Xp is a multiset of n nontrivial elements of HompTk, S1q and each σp is 1 or ´1.
Given abstract isotropy data pXp, σpqpPP, for each codimension-one closed subgroup H of

T “ Tk and each pn´ 1q-dimensional representation ρ : H ÝÑ Vρ with trivial invariant subspace
VH

ρ , we write Pρ Ď P for the set of indices p such that Xp Ď HompT, S1q can be decomposed as
tαpu >Y, where H “ ker αp and the restriction of Y to H is the multiset of weights of ρ. We will
call abstract isotropy data GKM when each Xp is a set no two elements of which are collinear.

The condition on GKM abstract isotropy data ultimately extracted from (2.4) is this:
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For all ρ,
ÿ

pPPρ

1
σpαp

“ 0. (2.5)

Now we can state the central problem.

Problem 2.10. Given GKM abstract isotropy data pXp, σpqpPP satisfying (2.5), does there exist a
compact, oriented, stably complex GKM T-manifold M whose isotropy data is pXp, σpqpPP?

We state a generalization, as yet unanswered, in Appendix A.

3. Two dimensions
The statement of Problem 2.10 in case n “ k “ 1 is particularly simple but gives intuition for the
general proof and provides a useful example of the meaning of the signs σ.

Theorem 3.1. Let P be a finite set, for each p P P let Xp “ tαpu contain a single element of HompS1, S1q,
and let σp P t˘1u. Partition P into sets P` consisting of those p for which ker αp is the group of `th roots
of unity, and assume that for all ` ě 1,

ÿ

pPP`

1
σpαp

“ 0.

Then there exists a compact, oriented, stably complex S1-surface M and an identification of P with MS1

such that for each p P MS1
the weight of the isotropy action of T on Tp M is αp and the given orientation

of Tp M agrees with the complex orientation if and only if σp “ 1.

Proof. For each ` ě 1 and all p, q P P` we have αp “ ˘αq, so if we write s : S1 id
ÝÑ S1 for the

standard generator, (2.5) implies there are as many p P P with σpαp “ `s as there are q P P with
σqαq “ ´`s. Use this observation to partition P into pairs tp, qu. Then M will be a disjoint union
of manifolds M1 with isotropy data

`

pαp, σpq, pαq, σqq
˘

corresponding to these, to be constructed
in the following examples.

Example 3.2 (σp{σq “ 1). Consider the action of S1 on S2 – CP1 induced by S1 `
Ñ S1 ãÑ Cˆ and the

multiplication of Cˆ With the standard complex structure on CP1, the tangent representation at
the north pole 0 is `s and that at the south pole 8 is ´`s. If we give CP1 the standard orientation
induced from the basis 1, i of C, then σ0 “ σ8 “ 1. If we give it the opposite orientation, then
σ0 “ σ8 “ ´1. Either way σ0α0 ` σ8α8 “ 0.

Example 3.3 (σp{σq “ ´1). The tangent bundle TS2 to a sphere S2 is stably trivial, as the normal
bundle ν of the inclusion in R3 is trivial and R3

“ TS2 ‘ ν. In coordinates, ν and TS2 can be
seen as the subsets of S2 ˆR3 given respectively by pairs pp, vq such that p P S2 and v K p and
by pairs pp, apq with a P R. Stabilizing again allows us to define a stable complex structure on
S2 distinct from the standard stable complex structure on CP1. Explicitly, we have a real bundle
isomorphism

TS2 ‘ ν‘R „
ÝÑ R3 ‘R „

ÝÑ pC2qR

which on the fibre over each point p P S2 takes

pv, ap, bq ÞÝÑ
`

xpv` apq ` iypv` apq, zpv` apq ` ib
˘
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Pulling back the standard constant real frame on pC2qR gives a frame on TS2 ‘R2 which on the
fiber pK ‘Rp‘R over p “ px, y, zq P S2 is

`

p1, 0, 0q ´ xp, 0, 0
˘

,
`

p0, 1, 0q ´ yp, 0, 0
˘

, p~0, p, 0q, p~0, 0, 1q.

In particular, at both the north and south poles p˘ “ p0, 0,˘1q, the first two basis vectors are
`

p1, 0, 0q, 0, 0
˘

and
`

p0, 1, 0q, 0, 0
˘

.
On the other hand, the standard orientation of S2 is given at p˘ by the basis p˘1, 0, 0q, p0, 1, 0q

of Tp˘
S2. Thus σp`

“ 1 and σp´
“ ´1, so, with the same action as in Example 3.2, we have

αp`
“ αp´

“ `s. But still σp`
αp`

` σp´
αp´

“ `s´ `s “ 0.

Remark 3.4. In fact, these are in a strong sense the only examples: the only closed, connected,
oriented surfaces a circle acts on nontrivially are the torus and the sphere, and circle actions on
tori do not admit fixed points.

4. Four dimensions
In the case n “ k “ 2 we are able to provide a more interesting construction. We will realize
GKM abstract isotropy data satisfying (2.5) by a skeletal construction starting with a 0-skeleton
whose points are in correspondence with the index set of the given abstract isotropy data. The
1-skeleton will be modelled by a 2-regular graph.

Definition 4.1. An graph consists of a set of vertices and a set of edges between them; multiple
edges between the same pair of vertices are allowed. Given an graph Γ, write V pΓq for the set
of vertices of Γ and E pΓq for the set of orientations of edges of Γ—thus each edge of Γ appears
twice in E pΓq, once with either orientation. If e P E pΓq starts at p P V pΓq and ends at q, we write
e : p Ñ q, and ē : q Ñ p for the same edge with the opposite orientation.

We need two lemmas, the first of which we generalize substantially in the next section and
the other of which is sui generis.

Lemma 4.2. Given GKM abstract isotropy data pXp, σpqpPP satisfying (2.5), there exists a 2-regular graph
Γ with vertex set P and labels αpeq P HompT, S1q for each oriented edge e such that

• for each e : p Ñ q, we have σpαpeq ` σqαpēq “ 0,

• if the two oriented edges emanating from p are e, e1, then Xp “ tαpeq, αpe1qu, and

• if we write Xp “ tαpeq, βpequ and Xq “ tαpēq, βpēqu, then βpēq ” βpeq
`

mod αpeq
˘

.

The resulting graph is what is called a GKM graph, as we elaborate on in Definition 2.8, and
in fact this lemma will be expanded to that case in Lemma 5.7. If the Xp are bases of HompT, S1q

it is what is called a torus graph.

Proof. Take P itself as V pΓq and construct the edges as follows. For each element p of a fixed Pρ as
in Definition 2.9, note that αp can be one of precisely two elements ˘α. From the identity (2.5) we
see that there are exactly as many p P Pρ such that σpαp “ α as those such that σpαp “ ´α. Choose
a bijection between these two subsets of Pρ and add to E pΓq an edge e between each pair of points
p and q matched by this bijection, setting αpeq “ α. By construction, we have σpαpeq ` σqαpēq “ 0
and βpeq ” βpēq pmod αq. Repeat this process for each ρ.
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It remains to check Γ is 2-regular. Given p P P “ V pΓq, if Xp “ tα, βu, then p P Pρ for
ρ “ β|ker α, so there is an edge at p corresponding to α. As the elements of Xp are not collinear,
the resulting subgroups ker α are distinct, so exactly two edges of Γ emanate from p.

As we will identify P with a subset of our final T-manifold, we will henceforth identify the
vertices p of the lemma with the corresponding p P P. The submanifolds corresponding to an
edge of this graph will be provided by the following construction.

Lemma 4.3. Let T be a two-dimensional torus. Given a pair of homomorphisms α, β P HompT, S1q and
an integer k there exists a T-equivariant Hermitian line bundle ξ : E ÝÑ CP1 such that the weight of the
induced action of T on the tangent space Tr1,0sCP1 is α and that on Tr0,1sCP1 is ´α, while the weight of
the induced action of T on Er1,0s is β and that at Er0,1s is β` kα.

Proof. Let Cˆ be an abstract algebraic torus, to be used as an auxiliary. Given ρ P HompT, S1q and
k P Z write Cρ,k for the one-dimensional complex representation of T ˆCˆ given by pt, zq ¨ v :“
ρptqzkv.

Form the pT ˆ Cˆq-representation C0,´1 ‘ Cα,´1 ‘ Cβ,k; projecting out the last coordinate
makes this the total space of a pT ˆ Cˆq-equivariant line bundle over C0,´1 ‘ Cα,´1 – C2. If
we restrict this line bundle to C2zt~0u and quotient the Cˆ-action out from both total and base
space of this restricted bundle, we get a T-equivariant line bundle E Ñ CP1. One may check that
the T-action on CP1 has respective weights α and ´α at r1, 0s and r0, 1s and the other weights of
the T-action on the fibres Er1,0s and Er0,1s are respectively β and β` kα.

Remark 4.4. The line bundle E contains a natural “unit disc” subbundle DE determined by im-
posing the restriction |w| ď

a

|z0|2 ` |z1|
2 on points pz0, z1, wq P C2zt~0u ˆCβ,k before quotienting

by the Cˆ-action. It also induces an orientation on E and a fiberwise complex structure. The
weights of the action at r1, 0s and r0, 1s P E will differ by a sign from the weights with respect to
the stable complex structure we are about to construct.

Now the pieces are in place.

Theorem 4.5. Let n “ k “ 2. Given GKM abstract isotropy data pXp, σpqpPP satisfying (2.5), there
exists a four-dimensional compact stably complex GKM T-manifold M whose isotropy data is pXp, σpqpPP.
Moreover, if the Xp are all bases of HompT, S1q, then the action is locally standard in the sense that
around every point of M there is a local T-equivariant homeomorphism to a neighborhood in C2 with the
standard T-action.

Proof. Given GKM abstract isotropy data pXp, σpqpPP satisfying (2.5), create a graph Γ as in
Lemma 4.2; note in particular that this 2-regular graph is a union of cycles. For each edge
e : p Ñ q, we write ae :“ σpαe (note that by Definition 2.8 we always have ae ` aē “ 0), and we
write βe for the single element of Xpztαeu. Consistently orient each cycle of Γ; this distinguishes
a subset of oriented edges E ` Ĺ E pΓq such that the end of each edge of E ` is the beginning of
another. For each oriented edge e : p Ñ q, observe that βē is equal to βe `mae for some m P Z by
Definition 2.8; thus we may use Lemma 4.3 to construct, for each e P E `, a complex line bundle
ξe : Ee ÝÑ CP1

e :“ CP1 with associated weights ae, βe at r1, 0s and ´ae, βē at r0, 1s. We identify
0 P Ee|r1,0s with p and 0 P Ee|r0,1s with q.

Each line bundle ξe has a well-defined closed unit disc bundle DEe by Remark 4.4. Recall that
for each pair e : p Ñ q and f : q Ñ r in E ` we have aē “ β f by construction. Now we glue together
DEe and DE f as follows. Select disjoint closed T-invariant neighborhoods Dē of r0, 1s P CP1

e and
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D f of r1, 0s P CP1
f , which we may equivariantly identify with closed unit discs Daē Ĺ Caē and

Da f Ĺ Ca f in one-dimensional T-representations. Then we have equivariant identifications

DEe|Dē – Daē ˆDβē ,

DE f |D f – Da f ˆDβ f ,
(4.1)

and since σqαē “ aē “ β f and a f “ βē, there exists an orientation-preserving equivariant diffeo-
morphism DEe|Dē

„
ÝÑ DE f |D f given in terms of the trivializing coordinates by pz, wq ÞÝÑ pw, zq.

Thus the interior of the quotient space

M1 :“
š

ePE `

DEe
N

`

e, pz, wq
˘

„
`

f , pw, zq
˘

for p e
Ñ q

f
Ñ r

naturally inherits the structure of a complex T-manifold.
The remainder of the construction proceeds in parallel for each component of M1, so we may

as well assume M1 is connected. Note that the T-orbit space DEe|De{T of each of the polydiscs we
plumbed with is diffeomorphic to a closed rectangle pD2{S1q ˆ pD2{S1q “ r0, 1s2, and the T-orbit
space of the restriction of DEe to CP1

ezpDe Y D f q is diffeomorphic to a rectangle p0, 1q ˆ r0, 1s.
The entire orbit space M1{T is a closed annulus, smooth except at the points p0, 0q and p1, 1q
in each identification rectangle r0, 1s2. Thus a small T-invariant neighborhood of BM1 meets the
interior pM1q

˝ in an open set which is a principal T-bundle over an open annulus. Since any such
bundle is globally trivializable, we may smoothly and equivariantly identify this intersection
with S1 ˆ p1´ ε, 1q ˆ T. Writing Dp1´ε,8s for the complement in S2 – R2 Y t8u of the closed disc
of radius 1´ ε, we set

M :“ M˝
1 Y

S1ˆp1´ε, 1qˆT
Dp1´ε,8s ˆ T.

It remains to find a T-equivariant stable complex structure on M such that the isotropy
weights at each p P P are Xp. We will identify this as the class of an T-equivariant complex
structure on TM‘R2, where the T-action on the stabilizing summand is trivial. We do this one
level at a time on the equivariant skeleton, first on neighborhoods of the fixed points p P P, then
on the edges DEe for e P E `, and finally on the 2-cell Dp1´e,8s ˆ T.

For the 0-skeleton, each p P P is the source of one directed edge e : p Ñ q in E `, note that
the natural T-equivariant almost complex structure on the tangent bundle of the unit polydisc
Dαe ˆDβe Ĺ Cαe ˆCβe has the correct weights, but the complex structure on the plumbing locus
DEe|De – Dae ˆ Dβe inherited from DEe will agree only if σp “ 1. Using the equivariant home-
omorphism Dae « Dαe which is complex conjugation if σp “ ´1 and the identity if σp “ 1, we
equip the plumbing locus with the complex structure of Dαe ˆDβe . If σp “ 1, stabilize this bundle
by adding C; otherwise, add the conjugate C. Note this structure induces a equivariant complex
structure on the bundles TDe and Ee|De – Dαe ˆCβe as well. For brevity, we will call these three
the 0-skeleton structures.

To find an equivariant stable complex structure on the equivariant 1-skeleton pM1q
˝, it is

enough to find one on each equivariant edge DEe. For this, recall that this edge is the total space of
a disc bundle π : DEe ÝÑ CP1

e and that since the kernel of the tangent map π˚ : TDEe ÝÑ TCP1

can be identified with π˚Ee, we have a short exact sequence

0 Ñ π˚Ee ÝÑ TDEe ‘R2
ÝÑ π˚pTCP1

e ‘R2
q Ñ 0 (4.2)
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of T-equivariant complex vector bundles over DEe. Using the identification DEe|De – Dae ˆ Dβe

from (4.1), this exact sequence restricts over DEe|De to the evidently equivariantly split sequence

0 Ñ Dae ˆDβe ˆCβe ÝÑ Dae ˆCae ˆDβe ˆCβe ˆR2 ÝÑ Dae ˆCae ˆDβe ˆR2 Ñ 0,

equipped with the diagonal action. We have a similar identification near the other pole of CP1
e ,

over DEe|Dē , and since DEe|De and DEe|Dē are closed, we may extend these splittings to an equiv-
ariant splitting of (4.2). Note that this decomposition is what we want on the level of T-actions,
but the orientations on the Cαe fibers may not agree with the 0-skeleton structure on DEe|De . If we
can determine equivariant complex structures on the bundles Ee and TCP1

e ‘R2 such that their
pullbacks, when restricted over De, agree with the 0-skeleton structures, then the splitting will
induce an equivariant complex structure on TDEe ‘R2 agreeing with the 0-skeleton structure as
well.

For Ee, we may just take the original equivariant complex structure provided by Lemma 4.3.
For TCP1

e ‘R2, we start with the 0-skeleton structure on pTDe > TDēq ‘R2 and recall from Def-
inition 2.2 that a equivariant complex structure can be identified with an equivariant section of
the bundle

C “ FrpTCP1
e ‘R2

q{GLp2,Cq ÝÑ CP1
e .

The quotient group T{pker αeq acts freely on the restriction γ of this bundle to CP1
eztp, qu, with

quotient a bundle
γ : Q Ñ I

over an open interval, and equivariant sections of γ correspond bijectively to sections of γ. Our
desired section J is already defined over De and Dē, so the corresponding section j of γ is defined
over the two half-open intervals Ie “ De{T and Iē “ Dē{T, which sit in I as p0, εs and r1´ ε, 1q do
in p0, 1q. As GLp4,Rq has two components, corresponding to positive vs. negative determinant,
and GLp2,Cq only one component, it follows the fibers GLp4,Rq{GLp2,Cq of γ and γ have two
components, corresponding to orientations of TCP1

e ‘R2, and hence the total spaces do as well.
Moreover, the 0-skeleton structures corresponding to the sections over DEeztpu and DEēztqu lie
in the same component of C owing to our choice of C or C as stabilizing factor, so corresponding
sections from Ie and Iē to Q do as well. Since I is contractible, Q is a trivial bundle, and hence
sections of Q correspond to maps I ÝÑ GLp4,Rq{GLp2,Cq. As Ie and Iē are closed in I and their
images lie in the same component of Q, we may connect the existing sections to a full section
j : I ÝÑ Q as hoped. By construction, the resulting J has isotropy weight αe at p and αē at q.

Having done this for all e P E ` gives a equivariant complex structure on TM1‘R2, since for a
sequence of edges p e

Ñ q
f
Ñ r, by construction the structures on Ee|Dē and E f |D f agree and likewise

that on TDē ‘R2 agrees with that on TD f ‘R2. Our final task is to extend this to a equivariant
complex structure on the rank-six real vector bundle TM‘R2

ÝÑ M. Under the identifications
we used to construct M, this amounts to constructing a section over over the equivariant two-cell
Dp1´ε,8sˆ T agreeing with one already chosen on the equivariant annulus S1ˆ p1´ ε, 1s ˆ T. The
bundle of complex structures over Dp1´ε,8s ˆ T is a trivial bundle with fiber GLp6,Rq{GLp3,Cq,
so the problem reduces to extending a nonequivariant map from an annulus to this fiber over an
entire open disc. But this is always possible as π1

`

GL`p6,Rq{GLp3,Cq
˘

“ 0.



11

5. GKM graphs
In this section we answer Problem 2.10 in the affirmative. We use the notation for graphs from
Definition 4.1.

Definition 5.1 ([Dar15, Def. 2.6][Dar18]). A GKM graph is a triple pΓ, α, σq comprising

• an unoriented n-regular graph Γ,

• an function σ : V pΓq ÝÑ t˘1u called an orientation, and

• an axial function α : E pΓq ÝÑ HompTk, S1q for some k ď n

such that

• for each e : p Ñ q we have αpēq “ ´σppq
σpqqαpeq,

1

• for each p P V pΓq, the elements of Xp :“
 

αpeq : e begins at p
(

are pairwise linearly inde-
pendent in HompTk, S1q – Zk, and

• for each e : p Ñ q in E pΓq, the images in HompTk, S1q{xαpeqy of Xp and Xq are equal.

An oriented torus graph is a GKM graph such that k “ n and each Xp is a basis of HompT, S1q.

GKM graphs fit into a family of combinatorial abstractions of actions along with abstract
isotropy data.

Construction 5.2. Given a GKM manifold (respectively, locally standard torus action on a stably
complex manifold) M, one extracts the corresponding GKM graph ΓpMq :“ pΓM, αM, σMq (re-
spectively, oriented torus graph) as follows. First, set V pΓMq “ MT. For each codimension-one
subtorus H ă T realized as an isotropy type, MH is a disjoint union of 2-spheres Se, each of
which contains two elements of MT and inherits a H-equivariant stable complex structure. We
assign a pair of oriented edges e : p Ø q : ē for each such 2-sphere Se. The isotropy representation
T Ñ T{H ñ TpSe is an irreducible summand of the isotropy representation of T on Tp M, and can
be viewed as an element αMpeq P HompT, S1q, prescribing our axial function.2 We set σMppq “ 1 if
the orientation on Tp M defined by M agrees with the orientation on

à

e : pÑq
CαMpeq and σMppq “ ´1

otherwise.

Construction 5.3. Given a GKM graph pΓ, α, σq, note that the local data ∆pΓq :“
`

Xp, σppq
˘

pPV pΓq
constitute GKM abstract isotropy data satisfying (2.5). The GKM condition on the abstract isotropy
data corresponds to the Xp being sets, the clause Xp ” Xq

`

mod xαpeqy
˘

is exactly the congruence
condition, and that σpqqαpēq “ ´σppqαpeq guarantees (2.5).

Notation 5.4. From now on we will identify a nonzero weight α P J :“ HompT, S1qzt1u with its
associated one-dimensional representation Cα and a multiset X of nonzero weights with the rep-
resentation

À

αPX Cα. Write R`T for the semigroup of representations with no trivial summands,
under direct sum. We make the trivial observation that if we write the direct sum operation on
representations multiplicatively, then we can write elements of R`T as monomials on elements

1 Note that this is more general than the original definition [GKM98, GZ01], which requres that αpēq “ ´αpeq.
2 There is a priori an arbitrary sign involved in the identifications S1 – T{H – Aut TpSe, but there is a natural

choice derived from the inherited stable complex structure on Se.
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of J, identifying Xp and
ś

αPXp
α. Identifying a list with a formal sum of its members, we forget

the labelling and view abstract isotropy data pXp, σpqpPP as elements
ř

pPPp
ś

αPXp
α, σpq of the free

monoid N ¨
`

R`Tˆ t˘1u
˘

.

Construction 5.5. Recall that one construction of Z from the natural numbers N is a Grothendieck
group construction: integers are equivalence classes of pairs pa, bq of naturals under the relation
that pa, bq „ pc, dq when a ` d “ c ` b. Equivalently, start with the free commutative monoid
N ¨ t˘1u on the letters t1u and t´1u. Then quotienting by the equivalence relation is the map
at1u ` bt´1u ÞÝÑ α´ b : N ¨ t˘1u ÝÑ Z. Two elements of N ¨ t˘1u have the same image under
the map if and only if it is possible to obtain one side from the other by adding a nonnegative
multiple of t1u ` t´1u.

Repeating this construction in parallel for each element V P R`T gives a map Π of additive
monoids from the monoid N ¨ pR`T ˆ t˘1uq of abstract isotropy data to the free abelian group
Z ¨ R`T “ ZrJs on R` J, given on basis elements by pV, σq ÞÝÑ σV.3

Now we have a chain of maps

GKM manifolds Γ //
**

rϕ

55GKM graphs ∆ //

f

33abstract isotropy data Π // ZrJs, (5.1)

whereas Problem 2.10 is to find a section of ∆ ˝ Γ. It is known [HO72] that the kernel of rϕ is given
by equivariant bordism, so that rϕ induces an injection from equivariant bordism classes of GKM
manifolds to ZrJs. Moreover, Alastair Darby showed im rϕ is all of im f .

Theorem 5.6 (Darby [Dar15, Cor. 2.27, 4.5][Dar18]). For each GKM graph pΓ, α, σq there exists a stably
complex GKM manifold M such that rϕpMq “ f pΓq in ZrJs. If pΓ, α, σq is an oriented torus graph, then
M is locally standard.

From the factorization (5.1) and Theorem 5.6, it is then enough to find a section of the pro-
cess labeled pX, σq taking a GKM graph to GKM abstract isotropy data satisfying (2.5) and then
find GKM manifolds whose abstract isotropy data corresponds to ker f . This is provided by the
following lemma and example.

Lemma 5.7. Let GKM abstract isotropy data pXp, σpqpPP satisfying (2.5) be given. Then there exists a
GKM graph pΓ, α, σq whose associated abstract isotropy data is pXp, σpqpPP.

Proof. The proof of Lemma 4.2 applies, changing only the number of elements of Xp and hence
the valence of the resulting graph.

3 If we view abstract isotropy data as an element of the domain as in Notation 5.4, this map is given by

pXp, σpqpPP ÞÝÑ
ÿ

pPP
σp

ź

αPXp

α
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Example 5.8. Consider the action of Tn on S2n obtained by suspending the standard action on the
unit sphere S2n´1 Ĺ Cn. If we write tj : Tn ÝÑ S1 for the projections, we see the associated GKM
graph has two vertices p, q joined by n edges ej : p Ñ q such that αpejq “ αpējq “ tj. We have
σppq “ 1 “ ´σpqq, and so f pΓMq “

ś

tj ´
ś

tj “ 0.
More generally, given a GKM graph pΓ, α, σq with exactly two vertices p, q, and n oriented

edges, as each edge e : p Ñ q must satisfy σpqqαpēq “ ´σppqαpeq by the first condition, from the
third condition we see we must have αpeq “ αpēq for all e and hence σpqq “ ´σppq. We then get

f pΓq “ σppq
ś

αpeq ` σpqq
ś

αpeq “ 0.

This graph is realized as the GKM graph of the unit sphere S2n in the Tk-representation R‘
À

e Cαpeq, where Tk acts trivially on the R factor.

Taken together, these facts resolve Problem 2.10.

Theorem A. Given GKM abstract isotropy data pXp, σpqpPP satisfying (2.5), there exists a compact,
oriented, stably complex GKM T-manifold M whose abstract isotropy data is pXp, σpqpPP.

Proof. By Lemma 5.7, there is a GKM graph Γ1 such that ∆pΓ1q “ pXp, σpqpPP. By Theorem 5.6,
there is a GKM manifold M1 such that rϕpM1q “ f pΓ1q, or rearranging, p∆ ˝ ΓqpM1q and pXp, σpqpPP

have the same Π-image. Per Construction 5.5, this means the two agree up to addition of a
nonnegative multiple of pV, 1q ` pV,´1q to one side or the other for every V P R`T.

For each V such that the coefficient of V in ΠpXp, σpqpPP is greater, construct a disjoint union
MV of 2n-spheres as in Example 5.8, and replace M1 with M1 >

š

V MV . For each V such that the
coefficient of V in rϕpM1q is greater, we do away with pairs of fixed points p, q with respective
isotropy data pV, 1q and pV,´1q via equivariant surgery. To see one can do this smoothly, put
an equivariant Hermitian metric on M1 so that the exponential equivariantly identifies neighbor-
hoods Up and Uq of the fixed points in M1 with ε-balls in their tangent spaces Tp M and Tq M.
Puncture the ε-balls at their origins, identifying them each with the T-space S2n´1pVq ˆ p0, εq,
where the first factor denotes the unit sphere in the unitary representation V and T acts trivially
on the radial coordinate, and glue the two punctured balls via the orientation-reversing equiv-
ariant diffeomorphism pv, rq „ pv, ε ´ rq. Doing this an appropriate number of times for each
discrepant V finally yields a manifold M whose isotropy data is pXp, σpqpPP.

A. The realization challenge in general
In this appendix we present the localization identities in full generality.

A.1. Strata
Given a stably complex T-manifold M, its orbit-type strata are defined to be the connected
components of the sets of points with the same stabilizer H ď T. Given a complex representation
ρ : H ÝÑ Aut Vρ of a closed subgroup H of the torus T with trivial invariant subspace pVρq

H, we
define the corresponding isotropy stratum Mρ to be the set of points p in M whose stabilizer is
equal to H and such that the isotropy representation of H on Tp M{pTp MqH is isomorphic to ρ.
This ρ is also called the isotropy label of the isotropy stratum. If a point p is in the closure of Mρ,
then the stabilizer K of p contains H. If p has isotropy label λ : K ÝÑ Aut Vλ, then under λ|H, the
space Vλ decomposes into Vρ and pdim K´ dim Hq trivial summands.
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Given a fixed point p P MT, a closed subgroup H of T, and a representation ρ : H ÝÑ Aut Vρ

with trivial invariant subspace pVρq
H we write p P Pρ if there is a T-invariant subspace W P Tp M

such that H “ kerpT Ñ Aut Wq and Tp M{W – Vρ as a T-representation. It follows that we have
a decomposition of T-representations

Tp M –
à

Cαh
‘
à

Cβi ,

where αh : T Ñ T{H Ñ S1 descend to span HompT{H, S1q and βi P HompT, S1q. This decomposi-
tion descends to a decomposition

Vρ –
à

Cβi |H.

It is possible the restrictions βi|H will be equal for multiple i (and the βi may already not be
distinct). Write tβ̄1, . . . , β̄su for the set of such restrictions and for each j P t1, . . . , su let Ij be the
subset of t1, . . . , dim Vρu such that βi|H “ β̄ j. If N Ď Mρ contains p P MT in its closure, then the
decomposition of Vρ as an H-representation determines an H-equivariant decomposition

νMN –

s
à

j“1
νβ̄ j

of the normal bundle as a sum of isotypic subbundles νβ̄ j
such that for each q P N,

pνβ̄ j
qq –

à

iPIj

Cβ̄ j
.

A.2. Localization identities
This particularly applies to characteristic classes cpEq P H˚pMq of a T-equivariant bundle E Ñ M,
for then there is always an equivariant extension cTpEq P H˚

TpMq, given as the value of c on the
non-equivariant bundle ETbT E ÝÑ ETbT M; pullback along the inclusion E Ñ ETbT E takes
cTpEq to cpEq. The same then obviously follows for monomials in the characteristic classes of
bundles. We will particularly be interested in monomials in the Chern classes of direct factors of
TN and νMN for N components of an isotypic submanifold Mρ as in Definition 2.5 in the case
MT is discrete.

The equivariant Euler class is easy to describe completely. Recall that the composition

α ÞÝÑ Cα ÞÝÑ pETb
T
Cα Ñ ETb

T
˚q ÞÝÑ c1pETb

T
Cαq

is an additive group isomorphism HompT, S1q
„
ÝÑ H2pBTq which we notate as if it were the

identity. An arbitrary oriented T-representation V is isomorphic as an oriented representation
to a direct sum

À

Cαj , where the αj P HompT, S1q are each determined up to a sign and the
expression is unique up to reordering and expressing two weights by their opposites. Particularly,
the product

ś

αj P H˚pBTq is well-defined. We thus have

eTpVq “ epETb
T

Vq “ σ ¨ e
`à

pETb
T
Cαjq

˘

“ σ
ź

epETb
T
Cαjq “ σ

ź

c1pETb
T
Cαjq “ σ

ź

αj,

where σ “ 1 or ´1 depending whether the given orientations of V and
À

Cαj agree or not. For
the Chern classes, we will start with the total Chern class, getting

cTpVq “ cpETb
T

Vq “ c
`
à

pETb
T
Cαjq

˘

“
ź

cpETb
T
Cαjq “

ź

`

1` c1pETb
T
Cαq

˘

“
ÿ

`PN
σ`pα1, . . . , αnq.
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and reading off cT
` pVq “ σ`pα1, . . . , αnq.

For each p in the component N Ď Mρ, assume we have αhppq, isotypic components νβ̄ jppq, and
indexing as specified as in Appendix A.1. Then

0 “
ż

N

ź

`

cT
` pTNqh`

s
ź

j“1

ź

`

cT
`

`

νβ̄ j

˘mj,`
“

ÿ

pPNXMT

ś

` cT
` pTNqh`p

śs
j“1

ś

` cT
` pνβ̄ j

q
mj,`
p

eTpνNtpuq

“
ÿ

pPNXMT

ś

` σ`
`

αhppq
˘h` śs

j“1
ś

` σ`
`

βippq : i P Ij
˘mj,`

σp
ś

αippq

so long as the polynomial on the left-hand side has total degree less than dim N.

A.3. Abstract isotropy data in general
Given abstract isotropy data pXp, σpqpPP and a closed subgroup H of T, and representation
ρ : H ÝÑ Aut Vρ with trivial invariant subspace pVρq

H we write p P Pρ if there exists a de-
composition Xp “ tαhu > tβiu such that αh : T Ñ T{H Ñ S1 descend to span HompT{H, S1q and
À

Cβi |H – Vρ. As p P Pρ varies, write these as αhppq and βippq. Further, write tβ̄1, . . . , β̄su for the
set of restrictions of the βippq to H and for each j P t1, . . . , su let Ij be the subset of t1, . . . , dim Vρu

such that βippq|H “ β̄ jppq.
Then the general ABBV conditions are the following:

For all ρ,
ÿ

pPPρ

ś

` σ`
`

αhppq
˘h` śs

j“1
ś

` σ`
`

βippq : i P Ij
˘mj,`

σp
ś

αippq
“ 0 (A.1)

for every product of symmetric polynomials such that the total degree in the αh and βi of the
numerator is less than n´ k.

Finally, the precise statement of the realization conjecture is as follows:

Problem A.1. Given abstract isotropy data satisfying (A.1), does there exist a compact, oriented,
stably complex T-manifold M whose isotropy data is pXp, σpqpPP?
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