Neutral fixed points and bifurcations.

- **1-** Suppose that F has a neutral fixed point at x_0 with $F'(x_0) = 1$.
 - 1. Suppose also that $F''(x_0) > 0$. What can you say about x_0 : is it attracting, repelling, one-side attracting, one-side repelling?
 - 2. Idem as in 5 but assuming now that $F''(x_0) < 0$.
- **2-** Suppose that F has a neutral fixed point at x_0 with $F'(x_0) = 1$ and $F''(x_0) = 0$.
 - 1. Suppose also that $F'''(x_0) > 0$. What can you say about x_0 : is it attracting, repelling, weakly attracting, repelling?
 - 2. Idem as before but assuming now that $F''(x_0) < 0$.

3- Each of the following function has a neutral fixed point. Find this point and determine the type of it.

1. $F(x) = x + x^2$ 2. $F(x) = x - x^2$ 3. $F(x) = -x - x^2$ 4. $F(x) = -x + x^2$ 5. $F(x) = \frac{1}{x}$ 6. $F(x) = \frac{-1}{2}x^3 - \frac{3}{2}x^2 + 1$ 7. $F(x) = \exp(x - 1)$ (fixed point is $X_0 = 1$). 8. $F(x) = \sin(x)$ 9. $F(x) = \tan(x)$ 10. $F(x) = x + x^3$ 11. $F(x) = x - x^3$ 12. $F(x) = -x + x^3$ 13. $F(x) = -x - x^3$ 14. $F(x) = \log(|x - 1|)$

4- Each of the following functions undergoes a bifurcation of fixed point at the given parameter value. In each case, identify the type of the bifurcation. In each case, identify the phase phase portrait of the bifurcation.

- 1. $F_{\lambda}(x) = x + x^2 + \lambda, \lambda = 0$
- 2. $F_{\lambda}(x) = x + x^2 + \lambda, \lambda = 1$
- 3. $F_{\mu}(x) = \mu x + x^3, \mu = 1$
- 4. $F_{\mu}(x) = \mu x + x^3, \mu = 1$
- 5. $F_{\mu}(x) = \mu \sin(x), \mu = 1$
- 6. $F_{\mu}(x) = \mu \sin(x), \mu = 1$
- 7. $F_c(x) = x^3 + c, c = \frac{2}{3\sqrt{3}}$
- 8. $F_{\lambda}(x) = \lambda(\exp(x)1), \lambda = 1$
- 9. $F_{\lambda}(x) = \lambda(exp(x)1), \lambda = 1$
- 10. $F_c(x) = cx^2 + x, c = 0$
- 11. $F_c(x) = x^3 + cx^2 + x, c = 0$

5- Consider the family $f_{\mu}(x) = x^3 + \frac{9}{2}x^2 + (5+\mu)x + \frac{1}{2}$ with μ close to 0.

- 1. Sketch the graph of f. Try to localize the fixed point of f_{μ} for $\mu = 0$.
- 2. Show that the family has only one neutral fixed point for $\mu = 0$. Is it attracting or repelling? Justify.
- 3. Study the phase portrait of the bifurcation of the neutral fixed point.

6- Let f_{λ} be the family $f_{\lambda}(x) = \lambda x - x^3$. Shows that there is a periodic point of period two for $\lambda > -1$. Is it repelling or attracting? Justify.

7- Considering the quadratic family $Q_c(x) = x^2 + c$

- 1. Prove that for $\frac{5}{4} < c < \frac{3}{4}$ there is an attracting periodic point of period two.
- 2. Prove that for $c = \frac{5}{4}$ there is a neutral periodic point of period two
- 3. Prove that for $c = \frac{5}{4}$ there is a repelling periodic point of period two.
- 7- Consider the quadratic family $F_{\mu}(x) = x^2 \mu$ with $\mu \in [1,9]$.

- 1. For each μ sketch the graph and find the fixed points. Are attracting or repelling? Justify.
- 2. For which values of μ there exists an invariant interval?
- 3. For which μ there are periodic point of arbitrarily large period? Justify.
- 4. For each μ find the set $\{x: F^n_\mu(x) \to +\infty\}$.
- 5. For each μ find the set $\{x: F^n_\mu(x) \to -\infty\}$.
- 6. For which parameter of μ there is a bifurcation?