MAT247S, 2009 Winter, Problem Set 6 Solution

Grader: TAM, Kam Fai, geo.tam@utoronto.ca

1.(a) Since $W = \bigoplus_{i=1}^{l} F((T - \lambda I)^{i-1}(x))$ is $(T - \lambda I)$ -invariant and λI -invariant, it is also T-invariant. (b) By definition $(T - \lambda I)^{l}(x) = 0$, and $(-1)^{l}(t - \lambda)^{l}$ is of deg= $l = \dim(W)$. (c) If the minimal polynomial is $(t - \lambda)^{k}$ for some k < l, then $(T - \lambda I)^{k}(x) = l$

0. Since l is the smallest one giving $(T - \lambda I)^l(x) = 0$, we must have k = l.

2. By definition of initial vectors, for i = 1, 2 let $x_i = (T - \lambda I)^{m_i - 1}(y_i)$ with $(T - \lambda I)^{m_i}(y_i) = 0$. If $(T - \lambda I)^{l_1}(y_1) = (T - \lambda I)^{l_2}(y_2)$ for some l_i , then one can show $m_1 - l_1 = m_2 - l_2$. From this one can show $x_1 = (T - \lambda I)^{m_1}(y_1) = (T - \lambda I)^{m_2}(y_2) = x_2$.

3.(a) Since K_{λ} is *T*-invariant, so it is g(T)-invariant.

(b) (8 marks total) (\Rightarrow) If $g(\lambda) = 0$, then

(2 marks) pick a non-zero eigenvector $x \in K_{\lambda}$ (such eigenvector must exist), (1 mark) we have $U(x) = g(T)(x) = g(\lambda)x = 0$, so U is not invertible.

 (\Leftarrow) Suppose U is not invertible, so

(1 mark) there is non-zero vector $x \in K_{\lambda}$ that g(T)(x) = 0.

(1 mark) Since $x \in K_{\lambda}$, there is positive integer p so that $(T - \lambda I)^{p}(x) = 0$. (2 marks) If we choose the smallest such p, then $y = (T - \lambda I)^{p-1}(x)$ is non-zero, and $(T - \lambda I)(y) = 0$, i.e. y is a non-zero λ -eigenvector.

(1 mark) We have $U(y) = g(T)(T - \lambda I)^{p-1}(x) = (T - \lambda I)^{p-1}g(T)(x) = (T - \lambda I)^{p-1}(0) = 0$. On the other hand $U(y) = g(T)(y) = g(\lambda)y \neq 0$. We derive a contradiction. Therefore U is invertible.

REMARK In (\Leftarrow), a number of students pick a λ -eigenvector x, then by saying $g(T)(x) = g(\lambda)x \neq 0$ and conclude $\ker(g(T)) = 0$ But what you have shown is just $\ker(g(T)) \cap \ker(T - \lambda I) \neq 0$.

Alternative solution: Consider $S = T_{K_{\lambda}}$ first. We know there is a basis for K_{λ} so that S can be block-diagonalized so that each block is of the Jordan-

form
$$\begin{pmatrix} \lambda \ 1 \ 0 \ \dots \ 0 \\ \ddots \\ 0 \ 0 \ 0 \ \lambda \ 1 \\ 0 \ 0 \ 0 \ 0 \ \lambda \end{pmatrix}$$
. Under such basis $U = g(S) = \begin{pmatrix} g(\lambda) & * & * & * & * \\ & \ddots & & * \\ 0 \ 0 \ 0 \ g(\lambda) & * \\ 0 \ 0 \ 0 \ g(\lambda) & * \\ 0 \ 0 \ 0 \ g(\lambda) \end{pmatrix}$ on

each block. (Here * is not necessary 0 or 1, but the value is not important here.) Hence U is upper triangular with all diagonal entries being $g(\lambda)$. It is clear that U is invertible iff $g(\lambda) \neq 0$.

4.(a) it is because each K_{λ_i} are linearly independent.

(b) \supseteq is from definition of K_{λ_i} , and \subseteq is from the fact (iii) above.

(c) (6 marks total) Since $p(T_{K_{\lambda_j}}) = p(T)_{K\lambda_j} = 0$, we have (2 marks) the minimal polynomial $m_{T_{K_{\lambda_j}}}$ divides p.

(2 marks) If $t - \lambda_i$ divides $m_{T_{K_{\lambda_j}}}$ for $\lambda_i \neq \lambda_j$, then $T - \lambda_i I$ is not invertible on K_{λ_i} . this contradicts the fact (iii).

(2 marks) So $m_{T_{K_{\lambda_j}}}$ must of the form $(t - \lambda_j)^k$ for some $k < \lambda_j$, then for polynomial $p'(t) = (t - \lambda_1)^{l_1} \cdots (t - \lambda_j)^{l_j - 1} \cdots (t - \lambda_k)^{l_k}$ it is easy to show $p'(T) \equiv 0$ on each K_{λ_i} , hence is T_0 by fact (i) given. But $\deg(p') < \deg(p)$ contradicts the minimality of p. So $k = l_j$.

(d) (6 marks total) Let the cycle be $\gamma = \{x, \ldots, (T - \lambda_j I)^k(x)\}$ and $W = \operatorname{span}(\gamma) \subseteq K_{\lambda_j}$.

(3 marks) Since the minimal polynomial of T_W is $(t - \lambda_j)^k$, we must have $k \leq l_j$.

(3 marks) If all such cycle have length strictly less than l_j , then $(T - \lambda_j I)^{l_j - 1}$ kills K_{λ_j} , contradicting the minimality of p. Hence at least one cycle has length λ_j .

5.(a) Choose a basis and take T to be block-diagonalized, each block is the Jordan form $\begin{pmatrix} c & 1 & 0 & \dots & 0 \\ & \ddots & \\ 0 & 0 & 0 & c & 1 \\ 0 & 0 & 0 & 0 & c \end{pmatrix}$, with maximum size d. (b) The characteristic polynomial must be full of a structure of the formula of the formu

(b) The characteristic polynomial must be of the form $(-1)^n(t-c)^{n-1}(t-d)$. The minimality of p forcing d = c.

(d)
$$T_1 = \begin{pmatrix} \lambda & 1 \\ & \lambda \\ & & \lambda \end{pmatrix}, T_2 = \begin{pmatrix} \lambda & 1 \\ & \lambda \\ & & \lambda \end{pmatrix}$$

6. (Total 25 marks)

- (a) (3 marks) $ch_T(t) = (t-i)^2(t+i)^2$ (2 marks) eigenvalues are i, -i.
- (b) (2 marks) rank(T iI) = 3 (2 marks) rank(T + iI) = 2

(1 mark) for calculation

(c) (2 marks) $m_T(t) = (t-i)^2(t+i)$

(3 marks) Since by part (b) T + iI kills K_{-i} , while T - iI does not kill K_i but $(T - iI)^2$ does.

(d) (4 marks) $\binom{i}{i}_{-i}_{-i}$, which can be directly read from the minimal polynomial, or use dot diagram.

(e) (4 marks) $K_i = \operatorname{span}\{v = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}, (T - iI)v = \begin{pmatrix} 2 \\ 2 \\ 0 \\ 0 \end{pmatrix}\}.$ (2 marks) for calculation REMARK One compute $K_{-i} = \operatorname{span}\left\{\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}\right\}$, with each vector gives cycle of length 1.

7. Jordan basis $\left\{ \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$, with Jordan form $\begin{pmatrix} 2&1\\2&3\\3 \end{pmatrix}$ 8. One compute $U = T^2 + T - I = \begin{pmatrix} 5&5&1\\5&5\\5&5 \end{pmatrix}$. Using Young diagram (or whatever method) one show the Jordan form of U should be $\begin{pmatrix} 5&1\\5&5\\5&5 \end{pmatrix}$.