DEPARTMENT OF MATHEMATICS University of Toronto

Practice Exam in Algebra (3 hours)

- 1. (a) State the class equation for the finite group G, explaining briefly the meaning of the terms used.
 - (b) If G is a finite group of order p^n , where p is a prime and $n \geq 1$, show that the center Z(G) of G is non-trivial.
- 2. G is a group of order 100. Prove that G is not simple. Must G be solvable? Must G be nilpotent? (Justify your answer.)
- 3. F is a free abelian group with basis x_1, x_2, x_3, x_4 and H is the subgroup generated by the subset $\{x_1 + x_2 2x_3 x_4, 2x_1 2x_3, 2x_2 + 4x_3 + 4x_4\}$. If A = F/H, find the free rank and the invariant factors of A.
- 4. R is a ring, and M is an R-module.
 - (a) If S is a subset of M, explain what it means to say M is a free R-module with basis S.
 - (b) If A and B are free R-modules, prove that $A \oplus B$ is a free R-module.
 - (c) If $M = A \oplus B$, where A and B are R-modules, and M is free, need A and B be free? (Justify your answer.)
- 5. R is a commutative ring.
 - (a) Define what is meant by a prime ideal of R.
 - (b) If J is a prime ideal of R, show that the quotient ring R/J is an integral domain. Is the converse true?
 - (c) Give an example of a non-zero prime ideal of $\mathbb{Z}[x]$ which is not a maximal ideal.
- 6. R is an integral domain, and $N: R^{\#} \to \mathbb{Z}^+$ is a function (from the non-zero elements of R to the positive integers) such that $N(\alpha\beta) = N(\alpha)N(\beta)$ for all $\alpha, \beta \in R^{\#}$, and $N(\alpha) = 1$ if and only if α is a unit of R.
 - (a) Define what is meant by an irreducible element of R.

- (b) If $N(\beta) > 1$, prove that β can be written as a product of (≥ 1) irreducibles.
- (c) State an example of such an R which is not a unique factorisation domain.
- 7. Let p be a prime, and let K be the subfield of $\mathbb C$ which is the splitting field over $\mathbb Q$ of x^p-3 .
 - (a) Show $x^p 3$ is irreducible over \mathbb{Q} .
 - (b) If α is a primitive pth root of unity in \mathbb{C} , explain why $\mathbb{Q}(\alpha)$ is a subfield of K.
 - (c) Let G be the Galois group of K over \mathbb{Q} . Show that G has order p(p-1), and that G has a normal subgroup H of order p.
- 8. (a) Find the order of the abelian group

$$(\mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_6) \otimes (\mathbb{Z}_{10} \oplus \mathbb{Z}_{12})$$
.

- (b) Prove that $\mathbb{Q}/\mathbb{Z} \otimes \mathbb{Q}/\mathbb{Z} = \{0\}.$
- 9. R is a ring.
 - (a) Give a definition of the Jacobson Radical J(R) of R, in terms of the annihilators A(M) of simple R modules M.
 - (b) For $y \in R$, show $y \in J(R)$ if and only if 1 xy has a left inverse, for all $x \in R$.
 - (c) If F is a field, find $J(F[x_1,\ldots,x_n])$.
- N.B. Each ring R is required to have an identity element, and modules and ring homomorphisms are required to be unitary.