DEPARTMENT OF MATHEMATICS University of Toronto

Algebra Exam (3 hours)

September 1995

Notations: Let \mathbb{C} , \mathbb{R} and \mathbb{Q} denote the fields of the complex, real, and rational numbers, respectively. Let \mathbb{Z} deonte the ring of integers.

- 1. (a) Prove or disprove that each finite group of order 55 has a normal subgroup of order 11.
 - (b) Prove or disprove that each finite group of order 55 has a normal subgroup of order 5.
- 2. Let R be a ring. Suppose I_i , i = 1, ..., n, are ideals of R such that $I_i + I_j = R$ for $i \neq j$. Given $r_i \in R$.
 - (a) Show there is some $r \in R$ such that $r \equiv r_i \mod I_i$ for all i.
 - (b) Show, if $r' \in R$ and $r' \equiv r_i \mod I_i$ for all i, then $r' \equiv r \mod \bigcap_{i=1}^n I_i$.
 - (c) Show there is an isomorphism

$$f: \frac{R}{I_1 \cap \cdots \cap I_n} \rightarrow \frac{R}{I_1} \oplus \cdots \oplus \frac{R}{I_n}.$$

- (d) Let $m_i \in \mathbb{Z}$, i = 1, ..., n, such that $(m_i, m_j) = 1$ for $i \neq j$. Show $\mathbb{Z}_{m_1 ... m_n} \cong \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_n}$, $(\mathbb{Z}_m = \mathbb{Z}/(m))$.
- (e) Show $\mathbb{C}[x]/(x^n-1) \cong \mathbb{C}[x]/(x-1) \oplus \cdots \oplus \mathbb{C}[x]/(x-\zeta^{n-1})$.
- 3. Suppose R is a ring and N is a unitary left R-module (i.e. $1 \cdot n = n$ for all $n \in N$). Show, $R \otimes_R N$ is R-isomorphic with N.

- 4. Let G be a finite group and F a field. Let FG denote the group ring (group algebra) of G over F.
 - (a) Give a criterion for FG to be semisimple.
 - (b) In (i)-(v) write FG as a direct sum of indecomposable ideals of FG if possible. (An ideal is indecomposable if it is not the direct sum of two nonzero subideals.)
 - (i) $F = \mathbb{C}$ and G is commutative
 - (ii) $F = \mathbb{C}$ and $G = S_3$ (the symmetric group of three elements)
 - (iii) $F = \mathbb{C}$ and $G = C_3$ (the cyclic group of order 3)
 - (iv) $F = \mathbb{R}$ and $G = C_3$
 - (v) $F = \mathbb{Q}$ and $G = C_3$
- 5. Let V be a unitary finite-dimensional vector space over \mathbb{C} .
 - (a) Suppose T is a self-adjoint linear transformation on V. Show that $(Ty, x), x, y \in V$, is a Hermitian inner product. We say T is positive if $(Tx, x) \geq 0$, and T is strictly positive if T is positive and (Tx, x) = 0 implies x = 0.
 - (b) If T is any linear transformation on a unitary space V, then T^* denotes the adjoint transformation of T. Is T^*T self-adjoint? Is T^*T positive? Is T^*T strictly positive if T is nonsingular?
 - (c) Let T be a positive (and therefore self-adjoint) linear transformation on a unitary space V. Show there is a unique positive transformation H on V such that $H^2 = T$. Show also that H commutes with every transformation that commutes with T.
 - (d) Let T be a nonsingular linear transformation on a unitary space V. Show that T can be written T = UH, where H is positive and U is unitary; both, H and U, are unique.