DEPARTMENT OF MATHEMATICS University of Toronto

Algebra Exam (3 hours)

September 1997

No aids.

Do all questions.

Each of the five questions is worth 20 points.

1. Let p and q be distinct primes with p < q. Prove that the number of non-isomorphic groups of order pq is

 $\begin{cases} 2 & \text{if } q \equiv 1 \mod p \\ 1 & \text{otherwise.} \end{cases}$

- 2. Let R be a commutative ring with identity. Define the terms prime ideal and maximal ideal. Prove that R has a unique prime ideal if and only if every non-unit is nilpotent.
- 3. (a) Let p be a prime. Prove that

$$X^{p-1} + X^{p-2} + \dots + X + 1$$

is an irreducible polynomial in $\mathbb{Z}[X].$

- (b) Compute the Galois group of the (splitting fields of the) polynomials $X^3 2$ and $X^3 4X + 2$ over \mathbb{Q} .
- 4. (a) Let A be an $n \times n$ matrix over the complex numbers. Prove that A is nilpotent if and only if the trace of A^r is zero for all $r \ge 1$.
 - (b) Find all possible rational canonical forms for a 6×6 matrix with rational entries and having minimal polynomial $(X-2)^2(X+3)$. Find all possible Jordan canonical forms for a 6×6 matrix with complex entries and having the same minimal polynomial.

- 5. Let R be a ring with identity.
 - (a) Give a definition of the Jacobson radical J(R) of R.
 - (b) For $y \in R$ show that $y \in J(R)$ if and only if 1 xy has a left inverse for all $x \in R$.
 - (c) If F is a field, find $J(F[X_1,...,X_n])$.