DEPARTMENT OF MATHEMATICS University of Toronto

Algebra Exam (3 hours)

September 1998

No aids.
Do all questions.
All questions are of equal value.

- **1.** Suppose A is an 8×8 matrix whose characteristic polynomial is $\lambda^3(\lambda-1)^2(\lambda-5)^3$ and whose minimal polynomial is $\lambda(\lambda-1)^2(\lambda-5)^2$. What is the dimension of each of its eigenspaces?
- 2. Classify all groups of order 12.
- **3.** What is the Galois group of (the splitting field of) $X^3 2$ over \mathbb{Q} ? (Explain your answer.)
- 4. Give a set of representatives for the conjugacy classes in the symmetric group S_5 , and find the number of elements in each class.
- **5.** If p is a prime, what is the order of $GL(2, \mathbb{F}_p)$, the group of invertible 2×2 matrices over the field with p elements?
- **6.** For which primes p is every element of the finite field \mathbb{F}_p equal to the fifth power of an element of the field?
- 7. Suppose $f \in \mathbb{Q}[x]$ is an irreducible cubic polynomial for which the Galois group of the splitting field of f over \mathbb{Q} is not abelian. How many subfields does the splitting field of f have, and how many of them are normal? (Explain your answer.)

- **8.** (a) What are the maximal ideals in $\mathbb{C}[x]$? Explain your answer.
 - (b) Give an example of a ring that contains a prime ideal that is not maximal. Explain your answer.
- **9.** What are the maximal ideals in $\mathbb{R}[x]$? Explain your answer. (Hint: What is

$$\mathbb{R}[x]/(x^2+1),$$

where $(x^2 + 1)$ means the principal ideal generated by $x^2 + 1$?)

10. Both \mathbb{Z}_2 and \mathbb{Z}_3 are modules over the ring \mathbb{Z}_6 in a natural way. Identify the tensor product

$$\mathbb{Z}_2 \otimes_{\mathbb{Z}_6} \mathbb{Z}_3$$
.

(Here \mathbb{Z}_m means $\mathbb{Z}/(m\mathbb{Z})$)