DEPARTMENT OF MATHEMATICS

University of Toronto

Algebra Exam September 7, 2000

Time: 3 hours No aids allowed

1. [20 points]

Let S_n be the symmetric group on n letters, $n \geq 2$.

- a) Find the cycle decomposition of the element (18104)(3498) of S_{10} . What is its order?
- b) Let $\sigma = (421)(3675)$ and $\tau = (45)(761)$. Compute $\tau \sigma \tau^{-1}$.
- c) Describe the conjugacy class of the element $(12 \cdots n)$ in S_n .
- d) Let $H = \langle (12 \cdots n) \rangle$ be the subgroup of S_n generated by $(12 \cdots n)$. Find the normalizer of N of H in S_n .

2. [20 points]

Let T be the linear transformation on the complex vector space

$$V = \mathbb{C}[x]/(x^2 - 1)(x + 1) \oplus \mathbb{C}[x]/(x^4 - 1) \oplus \mathbb{C}[x]/(x^2 + 1)^2(x - 1)$$

obtained by multiplying by x.

- a) Find the invariant factors and elementary divisors of T.
- b) Determine the rational canonical form and the Jordan canonical form of T.
- c) Find the minimal and characteristic polynomials of T.

3. [20 points]

Let R be an integral domain.

- a) Define irreducible element of R, prime element of R, and associate elements in R.
- b) Prove that a prime element of R is irreducible.
- c) Prove that an element $r \in R$ is irreducible if and only if the ideal (r) is maximal among the set of proper principal ideals in R. (Here the set of principal ideals is ordered by inclusion).
- d) Define UFD (unique factorization domain).
- e) Prove that an irreducible element in a UFD is prime.

R is said to satisfy the ascending chain condition for principal ideals, abbreviated ACCPI, if whenever $I_1 \subset I_2 \subset \cdots$ is an increasing sequence of principal ideals in R, there exists an n such that $I_m = I_n$ for all $m \geq n$.

f) Prove that R is a UFD if and only if R satisfies the ACCPI and every irreducible element of R is prime.

4. [20 points]

Let R be a ring with 1.

- a) Define cyclic left R-module and simple left R-module. (Note: irreducible is the same as simple).
- b) Prove that a nonzero left R-module M is simple if and only M is a cyclic left R-module with any nonzero element as generator.
- c) Suppose that M_1 and M_2 are simple left R-modules. Show that any nonzero Rmodule homomorphism from M_1 to M_2 is an isomorphism. Prove that $\operatorname{End}_R(M_1)$ is a division ring.

5. [20 points]

- a) Define field, field extension, separable field extension, finite Galois extension, and Galois group of a finite Galois extension.
- b) State the fundamental theorem of Galois theory.

Let M be a finite Galois extension of a field K, with Galois group $\operatorname{Gal}(M/K)$. Suppose that L is a subfield of M containing K. Set $G = \{ g \in \operatorname{Gal}(M/K) \mid \sigma(L) \subset L \}$.

- c) Prove that G is the normalizer of Gal(M/L) in Gal(M/K).
- d) Let $\operatorname{Aut}(L/K)$ be the set of automorphisms of L which fix K pointwise. Prove that $G/\operatorname{Gal}(M/L) \simeq \operatorname{Aut}(L/K)$.