## DEPARTMENT OF MATHEMATICS

University of Toronto

## Algebra Exam

September 6, 2001

Time: 3 hours No aids allowed

1. Let G be a group of order 56 and let  $f, h: G \to G$  be maps such that

$$f(x) = x^3, \qquad h(x) = x^4.$$

- a) Show that G is abelian  $\iff$  f, g are homomorphisms.
- b) State a generalization of a) for an arbitrary group of order  $u \geq 3$ .
- c) Use b) to show that a non-cyclic group of order 4 is abelian.
- **2.** Let A be a commutative ring with 1 and let P = (x) be a principal ideal of A. Consider  $I = \bigcap_{n=1}^{\infty} P^n$ .
  - a) Suppose P is prime. Let Q be a prime ideal of A such that  $Q \subsetneq P$ . Show that  $Q \subset I$ .
  - b) Assume that x is not a zero divisor in A. Show that I is prime and I = xI.
  - c) Assume that A is an integral domain, that P is prime, and that I is finitely generated. Prove that I = (0).
- **3.** Let A be a  $n \times n$  matrix with entries in  $\mathbb{C}$  (i.e.  $A \in M_n(\mathbb{C})$ ), such that  $A^r = I$  for some  $r \in \mathbb{N}$ .
  - a) Show that if A has a unique eigenvalue  $\zeta$ , then  $A = \zeta I$
  - **b)** Assume that  $A \in M_n(\mathbb{F}_2)$ , where  $\mathbb{F}_2$  is a finite field with 2 elements. Does **a)** still hold? If not, produce a counterexample.
  - c) Let k be a field. Prove that the ring  $M_n(k)$  contains an isomorphic copy of every extension of k of degree at most n.
- **4.** Let K be a field and let F = K(a), L = K(b) be two extensions of K (both contained in an algebraic closure  $\overline{K}$  of K).
  - a) Assume that F and L are normal, separable extensions of K and that the extension degrees [F:K] and [L:K] are coprime. Show that a+b generates the composite extension FL.
  - **b)** Assume only that  $F \cap L = K$ . Give an example where a + b does not generate FL.
- **5.** Let  $K/\mathbb{Q}$  be the splitting field of the cyclotomic polynomial  $\phi_{10}(x)$ .
  - a) Describe K and determine the degree of the extension  $[K:\mathbb{Q}]$ .

**b)** Determine the Galois group  $G = \operatorname{Gal}(K/\mathbb{Q})$  as well as the complete relationship between subgroups of G and subfields of K. Does G contain any subgroup of order 5?