DEPARTMENT OF MATHEMATICS University of Toronto

Algebra Exam (3 hours)

May 8, 2002

No aids.

Do all questions.

- 1. Let G be a finite abelian group, and let \widehat{G} be the set of all homomorphisms from G to $\mathbb{T}=\{z\in\mathbb{C}||z|=1\}$. Then \widehat{G} is an abelian group under the group operation of pointwise multiplication of functions. Let $\widehat{\widehat{G}}$ be the group of homomorphisms from \widehat{G} to \mathbb{T} . Give an outline of a proof of the following:
 - (a) $G \simeq \widehat{G}$ (not canonically)
 - (b) The map $\phi: G \longrightarrow \widehat{\widehat{G}}, g \mapsto \phi(g)$, where $\phi(g)(\chi) = \chi(g)$ for all $\chi \in \widehat{G}$, is an isomorphism.

(c)
$$\sum_{g \in G} \chi(g) = \begin{cases} |G|, & \text{if } \chi = 1\\ 0, & \text{if } \chi \neq 1 \end{cases}$$

(d)
$$\sum_{\chi \in \widehat{G}} \chi(g) = \begin{cases} |G|, & \text{if } g = e \\ 0, & \text{if } g \neq e \end{cases}$$
 (e is the identity in G)

- **2.** Show that \mathbb{Q} is not a projective \mathbb{Z} -module.
- **3.** Let R be the ring of all continuous functions from the closed interval [0,1] to \mathbb{R} and for each $c \in [0,1]$, let $M_c = \{f \in R | f(c) = 0\}$. Since $R/M_c \simeq \mathbb{R}$, M_c is a maximal ideal. Show
 - (a) If M is any maximal ideal of R, then there exists a real number $c \in [0,1]$ such that $M = M_c$.
 - (b) M_c is not equal to the principal ideal generated by x-c.
- **4.** Let K be a field of characteristic zero. Let G be the subgroup of Aut(K(x)/K) that is generated by the autmorphism $\phi: x \mapsto x+1$. Determine the fixed field E of G.

- **5.** Let G be a simple group of order 60. Suppose G has a subgroup H of order 12. Prove $G \simeq A_5$ (the alternating group on 5 letters).
- **6.** Let F be a field such that no polynomial of odd degree is irreducible over F. Let E/F be a finite Galois extension. Prove that $[E:F]=2^n$ for some positive integer n.