DEPARTMENT OF MATHEMATICS University of Toronto

Algebra Exam (3 hours)

September 2003

No aids allowed. Do all questions.

1. [20 points]

- a) Define nilpotent for a finite group.
- b) Let $D_{12} = \langle r, s \mid r^6 = s^2 = 1, rs = sr^{-1} \rangle$ be the dihedral group of order 12. Determine whether D_{12} is a nilpotent group.

2. [20 points]

Let R be a commutative ring with identity.

- a) Prove that if R is finite, then every nonzero prime ideal of R is a maximal ideal.
- b) An ideal I of R is primary if whenever $rs \in I$ and $r \notin I$, then $s^n \in I$ for some positive integer n. Prove that I is primary if and only if every zero divisor in R/I is a nilpotent element.

3. [20 points]

Let R be a PID, and let M be a finitely generated R-module of free rank (aka Betti number) 0.

- a) State the fundamental theorem giving the invariant factor decomposition of M.
- b) Prove that M is a cyclic R-module if and only if M has exactly one invariant factor.
- c) Prove that M is a simple (aka irreducible) R-module if and only if M has exactly one invariant factor, and the invariant factor is prime.

4. [15 points]

Let F be a field and let $f(x) \in F[x]$. Prove that there exists an extension E of F which contains a root of f(x).

5. [25 points]

Let E be a finite Galois extension of a field F, with Galois group G = Gal(E/F).

- a) Let n = [E : F]. Let m be a positive integer dividing n, and set $\mathcal{F}_m = \{K \text{ a field } | F \subset K \subset E, [K : F] = m\}$. Suppose that \mathcal{F}_m is nonempty. Show that the map $G \times \mathcal{F}_m \to \mathcal{F}_m$ given by $(\sigma, K) \mapsto \sigma(K)$, $\sigma \in G$, $K \in \mathcal{F}_m$, defines an action of G on the set \mathcal{F}_m . Prove that this action is transitive if and only if any two subgroups of index m in G are conjugate in G.
- b) Assume that $G = A_5$ (the alternating group on 5 letters). Prove that $\mathcal{F}_{12} \neq \emptyset$ and G acts transitively on \mathcal{F}_{12} . Determine the cardinality of \mathcal{F}_{12} , and show that if $K \in \mathcal{F}_{12}$, then K is not a Galois extension of F.