Algebra Qualifying Exam Thursday, September 8, 2005

1-4 p.m.

No aids allowed

Answer as many as you can. All questions are of equal value.

- 1. Show that there are no simple groups of order 70.
- **2.** Prove or disprove: every *p*-group is nilpotent.
- 3. The dihedral group D_{12} of order 12 acts by rotations and reflections on the regular hexagon. Label the vertices of the hexagon 1, 2, 3, 4, 5, 6. Let \mathcal{P} be the set of ordered pairs of vertices, so the cardinality of \mathcal{P} is 36. Then D_{12} acts on \mathcal{P} in the obvious way: for $\sigma \in D_{12}$, $1 \leq i, j \leq 6$, $\sigma \cdot (i, j) = (\sigma \cdot i, \sigma \cdot j)$, where $\sigma \cdot i$ is the image of vertex i under the original action of D_{12} on the vertices.
 - (i) Describe the orbits of D_{12} in \mathcal{P} .
 - (ii) For each of the orbits of D_{12} in \mathcal{P} , fix a point in the orbit and find the order of the stabilizer of that point in D_{12} .
- **4.** Suppose that R is a finite commutative ring with unit. Show that every prime ideal is maximal.
- 5. For each of the following statements, either prove the statement or provide a counterexample (with an explanation of why it is a counterexample).
 - (i) Suppose R is a PID and $I \subset R$ is a proper ideal. Then R/I is a PID.
 - (ii) Suppose R is a PID and $S \subset R$ is a subring containing the unit element 1. Then S is a PID.
 - (iii) Every Euclidean domain is a UFD.
- **6.** In $\mathbb{C}[x,y]$, let V be the subspace of all polynomials of degree 2 or less, i.e., the subspace spanned by $1, x, y, x^2, xy, y^2$. Let $T: V \to V$ be defined by $T = \frac{\partial}{\partial x}$. Find the invariant factors and elementary divisors of T.
- 7. Let $f(x) = x^6 1 \in \mathbb{Q}[x]$.
 - (i) Factor f(x) into a product of irreducible factors over $\mathbb{Q}[x]$.
 - (ii) What is the splitting field of f(x) over \mathbb{Q} and what is its Galois group?