University of Toronto Department of Mathematics

Algebra

Comprehensive Exam, Sept. 5, 2007 Total: 75 points

Name:

Note: No proofs required for questions 1 - 4.

1. [6 points] Let G be a group.

a) State the three Sylow theorems.

b) What is a *composition series* of G? To what extent is it unique?

2. [6 points] Let R be an integral domain.

- a) Define prime element and irreducible element.
- b) What is the connection between prime elements and irreducible elements in R?
- c) Let R[x] be the polynomial ring over R in one variable. Which of the following statements is correct?
 - $\Box R$ is Euclidean implies R[x] is Euclidean.
 - \Box R is a unique factorization domain implies R[x] is a unique factorization domain.
 - \Box R is a principal ideal domain implies R[x] is a principal ideal domain.

- **3.** [6 points] Let R be a commutative ring with unity.
- a) Define the tensor product $M \otimes_R N$ of two *R*-modules M, N.
- b) Let $\mathfrak{p} \subseteq R$ be a prime ideal. What is the localization $R_{\mathfrak{p}}$ of R at \mathfrak{p} ?

- **4.** [6 points] Let G be a finite group, K an algebraically closed field of characteristic 0, and V a finitedimensional K-vector space. Let $\rho: G \to \operatorname{Aut}_K(V)$ be a representation.
- a) What is the character χ of ρ ?
- b) Give an explicit expression for the character $\chi_{\rm reg}$ of the regular representation.
- c) State the orthogonality relations for characters.

5. [12 points] Let G be a group, and H a subgroup of index $n \in \mathbb{N}$. Show that there is a normal subgroup K of G of index at most n! that is contained in H.

6. [10 points] Let R be a unique factorization domain in which every nonzero prime ideal is maximal. Show that every nonzero prime ideal $\mathfrak{p} \subseteq R$ of R is a principal ideal.

7. [14 points] Let R be a principal ideal domain, $\{0\} \neq \mathfrak{a}, \mathfrak{b} \subseteq R$ two nonzero ideals in R. Prove or disprove:

$$\operatorname{Hom}_R(R/\mathfrak{a}, R/\mathfrak{b}) \cong \operatorname{Hom}_R(R/\mathfrak{b}, R/\mathfrak{a})$$
 (as *R*-modules).

Here $\operatorname{Hom}_R(M, N)$ denotes the set of *R*-module homomorphisms between the two *R*-modules *M* and *N*. Suggestion: One possible approach is to determine explicitly the set $\operatorname{Hom}_R(R/\mathfrak{a}, R/\mathfrak{b})$. 8. [15 points] Let $f \in \mathbb{Q}[x]$ be a polynomial of degree $n \in \mathbb{N}$. Assume that the Galois group $\operatorname{Gal}(f)$ of f is the symmetric group S_n . Let α be a root of f.

a) Show that f is irreducible. Suggestion: Assuming f = gh, find an embedding $\operatorname{Gal}(f) \hookrightarrow \operatorname{Gal}(g) \times \operatorname{Gal}(h)$. b) Let $n \ge 3$. Show that the only automorphism of $\mathbb{Q}(\alpha)$ is the identity.

c) Assume $n \ge 4$, and let $\beta := \alpha^n$. Show $\beta \notin \mathbb{Q}$.