UNIVERSITY OF TORONTO MAT 1100Y

3 hours

Final Exam

April 29, 2008

<u>Instructions</u>: Answer all questions. Unless noted otherwise, explanation and justification of your answers is expected.

- 1. (32 marks) a) Show that every group of order 200 has a nontrivial normal subgroup.
 - b) Make a list (up to isomorphism) of all abelian groups of order 200.
 - c) Let T be a 4×4 matrix with entries in \mathbb{C} whose minimum polynomial is $(\lambda 2)(\lambda 3)$. Make a list of all possibilities for the Jordan normal form of T.
 - d) Find all the ideals of the ring $\mathbb{Z}[x]/(2, x^3 + 26)$.
- 2. (12 marks) a) Let T belong to $\operatorname{GL}_k(\mathbb{C})$ such that $T^n = I$ (where I denotes the identity matrix).

Show that T is diagonalizable.

- b) Let G be a finite group and let $\rho: G \to GL_k(\mathbb{C})$ be a representation. Show that $\chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$ for all $g \in G$. (\bar{a} denotes the complex conjugate of a.)
- **3.** (16 marks) a) Define (or give a condition equivalent to) Noetherian ring.
 - b) Show that a Principal Ideal Domain is Noetherian.
 - c) Show that in a Principal Ideal Domain, every prime ideal is maximal.
 - d) Let R be an integral domain.
 - (i) Show that if $x \in R$ is prime, then x is irreducible.
 - (ii) Give an example to show that x can be irreducible but not prime.
- 4. (16 marks) a) Define the semidirect product of groups.
 - b) Find groups H and K such that $A_4 \cong H \rtimes K$. (A_4 denotes the alternating group.)
 - c) Show that A_4 is solvable.
 - d) Find elements x and y in A_4 such x and y are conjugate in S_4 but x and y are not conjugate in A_4 .
 - e) Find the character table of A_4 .

- 5. (10 marks) Let f(x) be an irreducible cubic in $\mathbb{Q}[x]$.
 - a) What are the possibilities for the Galois group of f?
 - b) Given some particular f(x), describe how you would determine which one is the Galois group of f.
- **6.** (14 marks) Let $F \subset K$ be an extension of fields.
 - a) Define what it means to say that an element $x \in K$ is algebraic over F.
 - b) Suppose that $a, b \in K$ are such that F(a) and F(b) are normal separable extensions of F with [F(a):F] relatively prime to [F(b):F].
 - (i) Show that $F(a) \cap F(b) = F$.
 - (ii) Show that F(a,b) = F(a+b).