University of Toronto

Department of Mathematics

Algebra Examination

Thursday, September 4, 2008, 1-4 p.m.

Duration: 3 hours

- 1. Let G be a finite group and p a prime. Show that if H is a p-subgroup of G, then $[N_G(H):H] \equiv [G:H] \pmod{p}$. (idea of solution: consider orbits of left multiplication action of H on the coset space G/H.)
- 2. Let R be a commutative ring with 1.
 - a) Prove that if R is finite, then every prime ideal of R is maximal.
 - b) Suppose that for each $a \in R$, there exists an integer $n \geq 2$ (*n* depending on *a*) such that $a^n = a$. Prove that every prime ideal of R is maximal.
- 3. Prove that for any finite abelian group G, there exists a Galois extension K such that $Gal(K/\mathbb{Q}) \simeq G$. [You may need a special case of Dirichlet's theorem on arithmetic progression, namely, given any integer m > 1, there are infinitely many primes p with $p \equiv 1 \pmod{m}$.]
- 4. Prove that any commuting set of diagonalizable linear transformations is simultaneously diagonalizable. More precisely, let V be a finite dimensional vector space over a field k and let $\{T_{\alpha}\}_{{\alpha}\in A}$ be a set of commuting linear transformations on V which are diagonalizable. Then there exists a basis of V such that the matrices of T_{α} with respect to that basis are all diagonal matrices for all ${\alpha}\in A$.
- 5. Let G be a finite group. Let $n \in \mathbb{N}$. Define $\theta_n : G \to \mathbb{N}$ by

$$\theta_n(g) = \#\{ h \in G \mid h^n = g \}, \qquad g \in G.$$

Let χ_i , $1 \leq i \leq r$ be the distinct irreducible (complex) characters of G. Set

$$\nu_n(\chi_i) = |G|^{-1} \sum_{g \in G} \chi_i(g^n).$$

Prove that $\theta_n = \sum_{i=1}^r \nu_n(\chi_i) \chi_i$. (Idea of solution: Use orthogonality relations.)

6. Let p be a prime and let \mathbb{F}_p be the finite field with p elements. Suppose that L is a Galois extension of fields such that $\operatorname{Gal}(L/K) = GL_2(\mathbb{F}_p)$. Let L_1 and L_2 be the subfields of L containing K that correspond to the subgroups $H_1 = SL_2(\mathbb{F}_p)$ and

$$H_2 = \left\{ \begin{array}{cc} \left(egin{array}{cc} a & b \\ 0 & c \end{array} \right) & a,c \in \mathbb{F}_p^{\times}, \ b \in \mathbb{F}_p \end{array} \right\}$$

of Gal(L/K).

- a) Compute the degrees $[L_1:K]$, $[L_2:K]$ and $[L_1\cap L_2:K]$.
- b) Let L_1L_2 be the composite of L_1 and L_2 . Prove that L_1L_2 is a Galois extension of L_2 , but L_1L_2 is not a Galois extension of K.
- c) Compute $Gal(L/L_1L_2)$ and $Gal(L_1L_2/L_2)$.