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No aids allowed.
Do as many questions as you can. An expected perfect result is 60 pts
or higher.

(1) a) Prove that the quotient of a group G by its center Z(G) is a
cyclic group if and only if G is Abelian, i.e. G = Z(G). (5 pts)

b) Classify all groups of order 8. (5 pts)

(2) a) Prove that for a group G its commutant H is the maximal
Abelian quotient of G. (5 pts)

b) Consider the symmetric group Sn. Prove that there are ex-
actly 2 different group maps from Sn to the multiplicative group
of complex numbers C∗. (5 pts)

(3) Let F be a finite field with q elements. Consider a finite di-
mensional vector space Fn over F. Denote the group of linear
automorphisms of Fn (resp. the group of non-strictly upper
triangular automorphisms of Fn) by G (resp. by B).

a) Prove that any element of B is a product of a diagonal el-
ement and several elements of the form Aij, i < j. Here Aij

denotes the elementary matrix with units on the diagonal and
the only non-zero non-diagonal entry placed in the box (i, j).
(5 pts)

b) Find the number of double cosets of G by B. (10 pts)

(4) Consider the set N of nilpotent square matrices over C of the
size n. The group GL(n) acts on N by conjugation. Classify
the orbits. (10 pts)

(5) Let A be a commutative ring. Prove that a polynomial f(x) ∈
A[x] is invertible in A[x] if and only if its constant term is
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invertible in A and the rest of the coefficients are nilpotent in
A. (15 pts)

(6) Let V be a vector space of dimension n. Consider an invertible
linear map A : V → V .

a) Give the definition of the exterior powers Λk(V ). (5 pts)

b) Let Λn−1(A) be the corresponding automorphism of Λn−1(V )
(it takes v1 ∧ . . . ∧ vn−1 to A(v1) ∧ . . . ∧ A(vn−1)). Find the
determinant of Λn−1(A) as a function of det(A). (10 pts)

(7) a) Define the n-th cyclotomic polynomial Φn(x) over Q. (5 pts)

b) Find explicitly Φ15(x). (5 pts)

(8) Determine the splitting field and its degree over Q for the poly-
nomial x6 − 4. (10 pts)

(9) a) Classify the finite Galois extensions of a finite field Fp. State
the description of the Galois groups for the extensions. (5 pts)

b) Let q = pn. Prove that the multiplicative group of the field
Fq is cyclic. (5 pts)

c) Prove that for any m there exists an irreducible polynomial
of degree m over Fp. (5 pts)


