DEPARTMENT OF MATHEMATICS University of Toronto

Practice exam in Analysis (3 hours)

- 1. How many roots does the equation $z^8 2z^5 + 6z^3 z + 1 = 0$ have in the region |z| < 1?
- 2. (i) Find one 1-1 onto conformal map f that sends the open quadrant $\{(x,y): x>0 \text{ and } y>0\}$ onto the open lower half disc $\{(x,y): x^2+y^2<1 \text{ and } y<0\}$.
 - (ii) Find **all** such f.
- 3. (i) Define almost everywhere convergence and convergence in L_1 -norm.
 - (ii) Show by example that neither form of convergence implies the other.
 - (iii) Prove that any sequence which is Cauchy in L_1 -norm has a subsequence which converges a.e.
- **4.** (i) Define the space $\mathcal S$ of Schwartz functions on $\mathbb R$.
 - (ii) State the Fourier inversion theorem.
 - (iii) Prove that the Fourier transform $f\mapsto \hat{f}$ maps ${\mathcal S}$ onto ${\mathcal S}$.
- 5. (i) Define the spectrum of a bounded linear operator $\,T\,$ on a Hilbert space $\,\mathcal{H}\,$.
 - (ii) What is meant by compactness of such a T?
 - (iii) If \mathcal{H} has an orthonormal basis $\{e_n\}_{n=1}^{\infty}$ and $\{a_n\}$ is a sequence of complex numbers converging to 0 define T by $Te_n=a_ne_n$. Prove directly that T is compact. What is the spectrum of T?
- **6.** (i) What is a tempered distribution on \mathbb{R} ?
 - (ii) Define the derivative of a tempered distribution.
 - (iii) Show that

$$\langle F, f \rangle = \int_{-\infty}^{\infty} \log|x| f(x) dx$$

defines a tempered distribution F and that

$$\langle F', f \rangle = PV \int_{-\infty}^{\infty} \frac{1}{x} f(x) dx \equiv \lim_{\epsilon \to 0^+} \int_{\{|x| > \epsilon\}} \frac{1}{x} f(x) dx$$
.