DEPARTMENT OF MATHEMATICS

University of Toronto

Analysis Exam (3 hours)

January 1995

- 1. State each of the following carefully and precisely:
 - (i) The Cauchy integral formula,
 - (ii) The Riemann mapping theorem,
 - (iii) The Poisson integral formula,
 - (iv) Rouché's theorem, and
 - (v) The Hahn Banach theorem.
- 2. State the Lebesgue dominated convergence theorem. State a criterion for differentiation under the integral in $\frac{d}{dt}\int_X f(x,t)d\mu(x)$.

Use the Lebesgue theorem to prove the criterion.

- **3.** Evaluate $\sum_{k=1}^{\infty} \frac{1}{k^2}$ by computing the Fourier coefficients of the function f(x)=x in $L^2[0,1]$.
- **4.** For $f \in C[0,1]$ define the Lipschitz norm $||f|| \equiv |f(0)| + \sup_{x \neq y} \frac{|f(x) f(y)|}{|x y|}$. Let $X = \{f \in C[0,1] : ||f|| < \infty\}$. Prove that $||\cdot||$ is a norm on X and that $(X, ||\cdot||)$ is a Banach space.

- **5.** (i) What is a tempered distribution on \mathbb{R} ?
 - (ii) Define the Fourier transform of such a tempered distribution.
 - (iii) For each of the following tempered distributions F identify \hat{F} as a function.
 - (a) $\langle F, f \rangle = f(a)$ $(a \in \mathbb{R})$
 - (b) $\langle F, f \rangle = \int_a^b f(x) dx$
- **6.** (i) Find one 1-1 onto conformal map f that sends the strip $\{(x,y): x \in \mathbb{R}, y \in (0,1)\}$ onto the open unit disc $\{(x,y): x^2+y^2<1\}$.
 - (ii) Find all such f.