## DEPARTMENT OF MATHEMATICS University of Toronto

## Analysis Exam (3 hours)

## September 1995

- 1. State each of the following carefully and precisely:
  - (a) Liouville's theorem,
  - (b) the maximal modulus theorem,
  - (c) the Dirichlet problem,
  - (d) Fubini's theorem, and
  - (e) the Lebesgue dominated convergence theorem.
- 2. Consider a formal expression  $f(z) = \sum_{-\infty}^{\infty} a_n z^n$ . What conditions on  $a_n$  are **equivalent** to each of the following statements, respectively:
  - (a) f is analytic on  $\{1 < |z| < 2\}$ ,
  - (b)  $f(\frac{1}{z})$  has a pole of order 3 at z = 0,
  - (c) f has an isolated singularity at z=0, and the residue of f at z=0 is 4,
  - (d) f is analytic on  $\mathbb{C}$  and f sends  $\mathbb{C}$  into  $\{z: \operatorname{Re} z > 0\}$ ,
  - (e) f restricted to  $D = \{z: |z| < 1\}$  is a 1-1 onto analytic function  $D \to D$ .
- 3. (a) Suppose u is a finite Borel measure on  $\mathbb{R}$  and  $f \in C_0(\mathbb{R})$ . Evaluate, with proof,

(i) 
$$\lim_{t \to \infty} \int_{\mathbb{R}} f(tx) d\mu(x)$$

and

(ii) 
$$\lim_{t\to 0} \int_{\mathbb{R}} f(tx) d\mu(x)$$
.

(b) Suppose that f is a bounded, measurable, periodic function on  $\mathbb{R}$  of period 1. Evaluate, with proof,

$$\lim_{t \to \infty} \int_0^1 f(tx) dx .$$

- 4. Let X be a complex normed vector space.
  - (a) Prove that a linear functional  $\varphi: X \to \mathbb{C}$  is continuous if and only if its kernel is a closed subspace of X.
  - (b) Prove that if Y is a finite-dimensional subspace of X then there is a closed subspace Z of X such that  $Y \cap Z = \{0\}$  and X = Y + Z.
- 5. If  $f \in L^1(\mathbb{R})$  and  $\xi \hat{f}(\xi) \in L^1(\mathbb{R})$  ( $\hat{f}$  denotes Fourier transform) prove that there is a  $g \in C^1(\mathbb{R})$  such that g = f a.e., and that  $g' \in C_0(\mathbb{R})$ .
- 6. Suppose T is a bounded normal operator on a Hilbert space  $\mathcal{H}$ ,  $||T|| \leq 1$  and 1 is not an eigenvalue of T. Prove that

$$\left\| \frac{1}{n} \sum_{i=0}^{n-1} T^i x \right\| \to 0 \quad \forall x \in \mathcal{H} .$$

(Hint: One way to do this is to use the spectral theorem to represent T as a multiplication operator, thereby converting the summation into a geometric series which can be summed explicitly.)