DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Exam (3 hours)

January 1996

- 1. State each of the following carefully and precisely:
 - (a) The Cauchy Riemann conditions for an analytic function.
 - (b) The definition of an essential singularity as an isolated singularity for an analytic function.
 - (c) The definition of a Laurent series and the corresponding Laurent's Theorem.
 - (d) The little Picard Theorem.
 - (e) The spectral theorem for a normal operator.
- 2. How many zeros does the polynomial

$$f(z) = z^6 + 5z^5 - 21z + 1$$

have in the annulus $\{1 < |z| < 2\}$? Why?

3. Suppose $h \in C^1[0,1]$ and ν is a finite Borel measure on [0,1]. Let $G(x) = \nu[0,x]$. Prove the following integration by parts formula:

$$\int_0^1 h(x)d\nu(x) = h(1)G(1) - \int_0^1 h'(x)G(x)dx.$$

(Hint: Fubini's theorem.)

4. Let $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ with the usual Legesgue measure and for $f \in L^1(\mathbb{T})$ let $\hat{f}(n)$ denote the nth Fourier coefficient of f. For $f \in L^1(\mathbb{T})$ let

$$|||f||| \ = \ \sum_{n\in\mathbb{Z}} |\hat{f}(n)|$$

and let

$$B = \{ f \in L^1(\mathbb{T}) : |||f||| < \infty \} .$$

- (a) Show that $\| \cdot \|$ is a norm on the complex vector space B, making B into a Banach space.
- (b) If $f, g \in L^2(\mathbb{T})$ show that $f * g \in B$.
- 5. (a) Define the Fourier transform \widehat{F} and the derivative F' of a tempered distribution F. Express $(F')^{\wedge}$ in terms of \widehat{F} .
 - (b) If δ_a denotes the unit point mass at a $(a \in \mathbb{R})$, find $\hat{\delta}_a$.
 - (c) If $\Phi(\xi) = \frac{\sin 2\pi \xi}{\xi}$ find the inverse Fourier transform $F = \check{\Phi}$ as a distribution. Observe that F corresponds to a function $\varphi \in L^1$ and explain why $\hat{\varphi} = \Phi$ as functions.

(Hint: Since $\widehat{F} = \Phi$, $(F')^{\wedge}$ can be expressed in terms of complex exponentials. Then use (b) to find F'.)

- (d) Evaluate $\int_{-\infty}^{\infty} \Phi(\xi)^2 d\xi$.
- 6. Suppose f_1, f_2, \ldots are measurable, positive, finite-valued functions on [0, 1]. Show that there exist contants $c_n > 0$ such that $\sum_{n=1}^{\infty} c_n f_n < \infty$ a.e.