DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Exam (3 hours)

May 1997

No aids. Do all questions. Each question is worth 20 marks.

- 1.
- (a) Define what it means for one measure to be absolutely continuous with respect to another.
- (b) State the Riesz representation theorem which identifies bounded linear functionals on a Hilbert space.
- (c) **Theorem**. If μ and ν are finite measures on a measurable space (X, \mathcal{B}) and $\mu(E) \leq \nu(E) \quad \forall E \in \mathcal{B}$ then there is an $f \in L^1(\nu)$ such that $0 \leq f \leq 1$ $\nu a.e.$ and $\mu(E) = \int_E f d\nu$ for each $E \in \mathcal{B}$.

The above theorem is a special case of the Radon-Nikodym theorem. Give a detailed proof the above theorem by defining a linear functional ϕ on $L^2(\nu)$ by $\phi(f) = \int f d\mu$, showing that ϕ is well-defined and bounded and then applying the theorem in (b).

- 2.
- (a) If f is a twice continuously differentiable function on the 1-torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ show that $\sum_{n \in \mathbb{Z}} n^4 |\hat{f}(n)|^2 < \infty$, where $\hat{f}(n)$ denotes the n-th Fourier coefficient.
- (b) Let f be a twice continuously differentiable function on \mathbb{T} with integral 0 and let α be an irrational number with the property that there is a constant c > 0 such that $|\alpha m/n| > c/n^2$ for all integers m and n. (It is known that such α exist.) Prove that there is a function $g \in L^2(\mathbb{T})$ such that $f(x) = g(x + \alpha) g(x)$ a.e. (The addition here is of course modulo 1, that is, addition in \mathbb{T} .) Hint: write g as a Fourier series with unknown coefficients, solve for the coefficients and show that they are indeed the coefficients of an L^2 function.

- 3.
- (a) State the uniform boundedness principle.
- (b) Suppose X is a complex Banach space and $\phi: X \times X \to \mathbb{C}$ is linear and continuous in each argument separately. This means that for each $x \in X$ the functions $\phi_x(y) = \phi(x,y)$ and $\phi^x(y) = \phi(y,x)$ are both linear and continuous on X. Show that ϕ must be jointly continuous, that is, continuous as a function on $X \times X$ Hint: Use the uniform boundedness principle to obtain a constant C such that $|\phi(x,y)| \leq C||x|| ||y||$, then show that this condition implies continuity.
- 4. If T is a bounded normal operator on a complex Hilbert space \mathcal{H} and $x \in \mathcal{H}$ let Z(x) denote the closure of the linear span of $\{T^ix, (T^*)^ix : i = 0, 1, 2, \ldots\}$. Say that the vector x is cyclic for T if $Z(x) = \mathcal{H}$. Also let W(x) denote the linear span (not the closure thereof) of $\{T^ix : i = 0, 1, 2, \ldots\}$.
 - (a) Let X be a compact subset of the complex plane and μ a finite Borel measure on X. Define T on $L^2(\mu)$ by (Tf)(z)=zf(z). Show that the constant function $1\in L^2(\mu)$ is cyclic for T.
 - (b) In the situation of (a) suppose now that $f \in L^2(\mu)$ and $f(z) \neq 0$ for μ a.a. z. Show that f is cyclic for T. Hint: in the case where there exist constants c, C such that 0 < c < |f(z)| < C you can reduce to the result in (a), and the general case follows easily.
 - (c) In the situation of (a) show that if T has no eigenvalues then μ is non-atomic, that is, $\mu\{z\} = 0 \quad \forall z \in X$.
 - (d) Now suppose T is a bounded normal operator on a Hilbert space \mathcal{H} and that T has no eigenvalues. Suppose further that $x, y \in \mathcal{H}, y \neq 0$ and that $y \in W(x)$. Use the spectral theorem and the results in parts (b) and (c) to show that $x \in Z(y)$.
- 5. Suppose that f is holomorphic in the unit disc and $|f(z)| \leq \frac{1}{1-|z|^2}$ there. Find the best upper bound you can for $|f^{(k)}(0)|, k = 1, 2, ...$
- 6. Prove Hurwitz' theorem: If $\{f_n\}_{n=1}^{\infty}$ is a sequence of zero-free holomorphic functions on a domain $\Omega \subseteq \mathbb{C}$ which converges uniformly on compact subsets of Ω to a complex-valued function f then either $f \equiv 0$ or f is zero-free.

$$\begin{aligned}
\text{Total} &= 120 \\
120 \times \frac{5}{6} &= 100
\end{aligned}$$