DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Exam (3 hours)

September 1998

No aids.

Do all questions.

Questions will be weighted equally.

- 1. The measure here is the Lebesgue measure on \mathbb{R} .
 - (a) Prove that if $f \in L^{p_1}(\mathbb{R}) \cap L^{p_2}(\mathbb{R})$, then $f \in L^q(\mathbb{R})$ for all $p_1 \leq q \leq p_2$.
 - (b) Produce a function f such that $f \in L^p(\mathbb{R})$ only when p = 2.
- 2. (a) State the definition of a bounded (continuous) linear operator between two Banach spaces.
 - (b) Prove that the kernel of a bounded operator is closed.
 - (c) Prove that, if the kernel is closed, a linear functional is bounded.
- **3.** (a) State Parseval's formula for Fourier Series.
 - (b) Prove that $\sum_{n=1}^{\infty} n^{-2} = \pi^2/6$. Hint. Use the Fourier series expansion for f(x) = x.
 - (c) Let f be such that

$$|\hat{f}(n)| \le C|n|^{-k}$$

for all k > 0. Prove that $f \in C^{\infty}$.

- 4. (a) State the uniform boundedness theorem (Banach Steinhaus) on Banach Spaces.
 - (b) Let f be measurable such that $f \cdot g \in L^1$ for all $g \in L^q$. Show that $f \in L^p$ (1/p+1/q=1).

- **5.** (a) Give a complex-analytic proof of the fundamental theorem of algebra: every nonconstant holomorphic polynomial with complex coefficients has a root.
 - (b) Prove the Casorati-Weierstrass theorem: Suppose f is analytic in the set 0 < |z-a| < R and has an essential singularity at a. Then the range of f is dense in \mathbb{C} .
- **6.** Verify that

$$w = \frac{(1+z^n)^2 - i(1-z^n)^2}{(1+z^n)^2 + i(1-z^n)^2}$$

transforms the circular sector $0<|z|<1,\,0<{\rm Arg}\,z<\frac{\pi}{n}$ onto the unit disc.