DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Exam (3 hours)

September 7, 1999

No aids.

Do all questions.

Questions will be weighted equally.

- 1. (a) Let S be the class of all complex-valued measurable simple functions s on a set X with measure μ such that $\mu\{x \mid s(x) \neq 0\} < \infty$. If $1 \leq p < \infty$ show that S is dense in $L^P(\mu)$.
 - (b) Give an example of a set X, a measure μ , and a sequence of functions $\{f_n\}_{n=1}^{\infty}$ which converges to 0 in $L^P(\mu)$ but does not converge to 0 pointwise a.e.
- **2.** Consider a Hilbert Space H, and a subspace M.
 - (a) Give an example of H and M such that M is not closed.
 - (b) Prove that M^{\perp} is a *closed* subspace of H.
 - (c) Prove that $\overline{M} = M^{\perp \perp}$.
- **3.** (a) Give a necessary and sufficient condition for a set $E \subset R$ to have Lebesgue measure 0.
 - (b) State the definition of absolutely continuous measures, and singular measures.
 - (c) Find a measure μ , singular with respect to Lebesgue measure, such that $\mu(I) > 0$ for every non-empty interval I.
 - (d) For a measure μ on R, satisfying

$$\left| \int e^{2\pi i n x} d\mu(x) \right| \le C |n|^{-2}, \qquad n \ne 0,$$

prove that it is absolutely continuous with respect to the Lebesgue measure.

4. (a) Is the following a Banach Space (with respect to a suitable norm)?

$$B = \{f: R \to R \text{ s.t. } f \text{ continuous, and } \lim_{|x| \to \infty} f(x) = 0\}.$$

Justify your answer.

(b) Suppose f is continuous, and such that

$$\sup |f\cdot g| \ \le \ C \ \sup |g|, \qquad \text{for all} \ f\in B\,.$$

Prove that

$$|f| \leq C$$
.

5. Suppose that f is analytic in $|z| < R_0$ and that $|a| < R < R_0$. Evaluate

$$\int_{\gamma} \frac{(R^2 - |a|^2)f(z)}{(z - a)(R^2 - z\overline{a})} dz$$

where γ is the circle |z|=R transversed counterclockwise. Hence prove that if 0 < r < R

$$f(re^{i\theta}) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{f(Re^{i\phi})d\phi}{R^2 - 2rR\cos(\theta - \phi) + r^2}$$

(Poisson's formula).

- **6.** (a) Show that if $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{n} \right)$ then f is analytic in the whole plane minus the points $0, 1, 2, \ldots$
 - (b) Find $f^{(k)}(z)$. (Justify.)