DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Exam (3 hours)

May 1, 2000

No aids.

Do all questions.

The value of each is indicated.

For each part provide a complete justification of your claims.

Total = 120. $120 \times \frac{5}{6} = 100$.

1. $[5 \times 4 = 20 \text{ marks}]$

Prove or give counterexample:

- (a) Any open set $U \subset (0,1)$ which includes all rationals in the unit interval has full Lebesgue measure: m(U) = 1.
- (b) The Banach space dual of $L^{\infty}([0,1])$ is $L^{1}([0,1])$.
- (c) If $f_n \to f$ in $L^1(\mathbf{R})$, then f_n converges pointwise a.e.
- (d) A non-decreasing function $f: \mathbf{R} \longrightarrow \mathbf{R}$ is differentiable a.e.

2. $[10 \times 2 = 20 \text{ marks}]$

Let $\psi(x) \geq 0$ be a smooth, compactly supported function satisfying $\int_{-\infty}^{\infty} \psi(x) dx = 1$. Given any (real-valued function) $f \in L^1(\mathbf{R})$ define its convolution with ψ by

$$g(x) = \int_{\mathbf{R}} f(y)\psi(x-y)dy.$$

- (a) Prove g(x) is differentiable everywhere.
- (b) Prove $||g||_1 \le ||f||_1$ for real $f \in L^1(\mathbf{R})$ and discuss the cases of equality.

3. $[10 \times 2 = 20 \text{ marks}]$

- (a) Given a closed subspace $K \subset H$ of a Hilbert space H, prove that each $h \in H$ can be uniquely expressed as h = k + j, where $k \in K$ and j is orthogonal to K.
- (b) Among $f \in L^2[0,1]$ satisfying $||f||_2 = 1$, which function(s) maximize $\int_0^1 x f(x) dx$?

4. (a) [5 marks]

Compute the Fourier transform of the Gaussian $g(x) = e^{-x^2/2}$.

(b) [5 marks]

Compute the Fourier transform of the error function

$$\Phi(x) = \int_{-\infty}^{x} e^{-t^2/2} dt.$$

(c) [10 marks]

Construct an elementary function whose Fourier transform is continuous but fails to be differentiable.

5. (a) [6 marks]

Evaluate $\int_{\gamma} \frac{zdz}{z^4-1}$ where γ is the circle |z-ia|=a traversed once counterclockwise and a>1.

(b) **[6 marks**]

Evaluate $\int_{\gamma} \frac{ze^z}{(z-b)^3} dz$ where γ is the unit circle traversed once counterclockwise and $|b| \neq 1$.

(c) [8 marks]

Let U be the open unit disc, i.e. $U=\{z\in\mathbb{C}\mid |z|<1\}$. Is $U\setminus\{0\}$ biholomorphic to $\mathbb{C}\setminus\{0\}$? Explain.

6. [20 marks]

A family \mathcal{F} of holomorphic functions on a domain Ω is said to be normal if any sequence of functions in \mathcal{F} contains a subsequence which converges uniformly on compact subsets of Ω . Suppose that the family \mathcal{F} fails to be normal. Show that there exists a point $z_0 \in \Omega$ such that \mathcal{F} is not normal in any neighbourhood of Ω .

<u>Hint</u>: a compactness argument.