DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Exam (3 hours)

Tuesday, September 4, 2001, 1-4 p.m.

No aids.

Do all questions.

Questions will be weighted equally.

- 1. State the following carefully and precisely:
 - (a) The Cauchy integral formula for the 10th derivative of an analytic function.
 - (b) The Poisson integral formula for a real harmonic function.
 - (c) The little Picard Theorem.
 - (d) Rouché's Theorem.
 - (e) The spectral theorem for a self-adjoint compact operator.
- 2. What is the general form of a rational function (the quotient of two complex polynomials) which is of real value on the unit circle? In particular, how are the zeros and the poles located?
- 3. Prove or disprove (i.e. give a counterexample) for each of the following.
 - (a) Each measurable set $A \subset [0,1]$ has the same Lebesgue measure as the topological closure of A.
 - (b) The orthogonal complement of any linear subspace (closed or not) of a Hilbert space H is a closed linear subspace of H.
 - (c) Let $\{f_n\}$ be a sequence in $L^1([0,1])$ such that $\lim_{n\to\infty} \int_0^1 f_n(x)f(x)dx = 0$ for every f in $L^1([0,1])$. Then $\lim_{n\to\infty} \int_0^1 |f_n(x)|dx = 0$.
- **4.** Let μ denote the Lebesgue measure on [0,1]. Prove that every Cauchy sequence in $L^p(\mu)$ with $1 \leq p < \infty$ has a subsequence that converges pointwise almost everywhere on [0,1].

- **5.** Let K denote the set of all real continuous functions on [0,1] that satisfy:
 - (i) $|f(x)| \le 1$ for each $f \in K$ and all $x \in [0, 1]$.
 - (ii) $|f(x) f(y)| \le |x y|$ for all x, y in [0, 1] and each f in K.

Prove that K is sequentially compact in C([0,1]). Here C[0,1] is the vector space of real continuous functions on [0,1] topologized by the sup norm.

- **6.** (a) Find the Fourier transform of $xe^{-\frac{x^2}{2}}$.
 - (b) What is the Fourier transform of $x^n e^{-\frac{x^2}{2}}$.
 - (c) Interpret your results in (a) and (b) in terms of the eigenvalues of \mathcal{F} : $L^2(-\infty,\infty) \to L^2(-\infty,\infty)$ with $\mathcal{F}(f)=$ the Fourier transform of f.
 - (d) Give a complete set of eigenvalues for \mathcal{F} .