DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Exam (3 hours)

Monday, May 5, 2003, 1-4 p.m.

No aids.

Do all questions.

Questions will be weighted equally.

1. Let (E, \mathcal{B}, μ) be a measure space. The measure μ is σ -finite if there exists $\{E_n\} \subset \mathcal{B}$ such that

$$E = \bigcup_{n=1}^{\infty} E_n$$
 and $\mu(E_n) < \infty \, \forall n$.

Prove that μ is σ -finite if and only if there exists f > 0, $f \in L^1(\mu)$.

2. Let H be a Hilbert space with orthonormal basis $\{\phi_k\}$. $\mathcal{L}(H,H)$ is the Banach space of bounded linear operators from H to H with the norm on $\mathcal{L}(H,H)$ being induced by the norm on H:

$$||A||_{\mathcal{L}(H,H)} = \sup_{x \neq 0} \frac{||Ax||_H}{||x||_H}$$

 $A \in \mathcal{L}(H,H)$ is a compact operator if

$$\overline{AU}$$

is compact whenever U is a bounded subset of H. That is, the closure of the image of a bounded set is compact.

a) Let

$$\psi_n \in [\operatorname{span}\{\phi_1, \dots, \phi_n\}]^{\perp}$$
 and $\|\psi_n\| = 1$.

Prove that the sequence ψ_n converges weakly to 0.

- b) Assume that the sequence $\{x_n\} \subset H$ converges weakly to x. Assume A is a compact operator. Prove that the sequence $\{Ax_n\}$ converges strongly to Ax. (i.e., $||Ax_n Ax|| \to 0$).
- c) Assume A is a compact operator. Construct a sequence of finite-rank operators $\{A_n\}$ such that

$$\lim_{n\to\infty} ||A_n - A||_{\mathcal{L}(H,H)} = 0.$$

- **3.** Let $f:[0,1] \to [0,1]$ be continuously differentiable and satisfy f(0)=0 and f(1)=1.
 - a) Let

$$A_n = \{x \in [0,1] \mid |f'(x)| < 1/n\}$$
 and $B_n = f(A_n)$.

Prove that $\mu(B_n) \leq 1/n$ where μ is Lebesgue measure.

- b) A point x_0 is a critical point of f if $f'(x_0) = 0$. The image of a critical point, $f(x_0)$ is called a critical value. Prove that the set of critical values of f has Lebesgue measure zero.
- c) Prove there exists at least one horizontal line $y = y_0 \in [0,1]$ which is nowhere tangent to the graph of f in \mathbb{R}^2 . (Recall that the graph of f is the set of points $\{(x, f(x))\}$.)
- **4.** Let X be a complex Banach space. Let I denote the identity operator. We say that $B \in \mathcal{L}(X,X)$ is invertible if B is injective, onto, and $B^{-1} \in \mathcal{L}(X,X)$.
 - a) Let $S, T \in \mathcal{L}(X, X)$. Prove that I ST is invertible if and only if I TS is invertible. (Hint: do some formal manipulations using geometric series to try and write one inverse in terms of the other.)
 - b) Let $S, T \in \mathcal{L}(X, X)$. Prove that

$$spectrum(ST) - \{0\} = spectrum(TS) - \{0\}.$$

- c) Let $S, T \in \mathcal{L}(X, X)$. Prove that $ST TS \neq I$. (Hint: assume ST TS = I and then prove the spectrum of ST must be unbounded and then ...)
- **5.** Let $f(z) = \frac{g(z)}{h(z)}$ where g, h are analytic in a neighbourhood of z_0 , $g(z_0) \neq 0$ and $h(z_0) = h'(z_0) = 0$. Show that the residue of f at z_0 is given by

$$\frac{2g'(z_0)}{h''(z_0)} - \frac{2}{3} \frac{g(z_0)h'''(z_0)}{\left(h''(z_0)\right)^2}.$$

- **6.** Let \mathcal{F} denote the family of circles and lines in the plane.
 - a) Prove that any linear fractional transformation maps members of $\mathcal F$ to members of $\mathcal F$.
 - b) What is the image of the circle with center 0 and radius 2 under the mapping $z \to \frac{z-i}{z+i}$?