University of Toronto Department of Mathematics

Analysis Examination

Monday, May 2, 2005, 1–4 p.m. Duration 3 hours

No aids allowed.

All questions are equal in value.

In case a problem contains an assertion the problem is to prove that assertion.

- 1. (a) A Hilbert space \mathcal{H} is separable if and only if it has a countable orthonormal basis.
 - (b) Suppose \mathcal{H} is any separable infinite-dimensional Hilbert space. Then \mathcal{H} has a family of closed subspaces $\{E_t : t \in [0,1]\}$ such that E_s is a strict subspace of E_t for all $0 \le s < t \le 1$.
- 2. In this problem (X, μ) is any finite measure space.
 - (a) Suppose $f_n \in L_1(\mu)$ and $||f_n||_1 \le 1$ for all n. Prove or disprove: $f_n/n \to 0$ almost everywhere as $n \to \infty$.
 - (b) Suppose f_n are measurable functions on X with values in $(-\infty, \infty)$. (The f_n are not assumed to be integrable.) Then there are constants $c_n > 0$ such that $c_n f_n \to 0$ almost everywhere.
- **3.** In this problem X is a Banach space and $P: X \to X$ is a (not necessarily continuous) linear map such that $P^2 = P$. Let R = P(X) denote the range of P and N the kernel of P.
 - (a) X is the direct sum of P and N, that is X = P + N and $P \cap N = \{0\}$.
 - (b) P is continuous if and only if R and N are closed.
- 4. In this problem g is a continuous 2π -periodic function on \mathbb{R} . For $n \in \mathbb{Z}$ the n-th Fourier co-efficient of g is

$$\widehat{g}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int}dt.$$

and the convolution g * g is defined by

$$g * g(x) = \frac{1}{2\pi} \int_0^{2\pi} g(x - y)g(y)dy.$$

State precisely any facts about the Fourier transform which you use in your arguments.

(a) $g \in C^{\infty}(\mathbb{R})$ if and only if for each k > 0 there is a constant C_k such that $|\widehat{g}(n)| \leq C_k |n|^{-k}$.

- (b) If $g * g \in C^{\infty}(\mathbb{R})$ then $g \in C^{\infty}(\mathbb{R})$.
- 5. Let f denote a holomorphic mapping of the unit disk to itself which in n of the identity mapping. Show that f can have at most one fixed point.
- **6.** Let f denote an entire function (which is not identically zero). Let n be a natural number. Prove that the following are equivalent:
 - (a) There exists an entire function g such that $f = g^n$.
 - (b) Every zero of f has order divisible by n.