University of Toronto Department of Mathematics Analysis Examination

Tuesday, September 6, 2005, 1–4 p.m. Duration 3 hours

No aids allowed.

All questions are equal in value.

- 1. Let μ denote Lebesgue measure on the unit interval [0,1] and \mathcal{B} the σ -algebra of Lebesgue measurable subsets of [0,1]. Given sets $A,B \in \mathcal{B}$ define $d(A,B) = \mu(A\Delta B)$. $(A\Delta B$ denotes the symmetric difference.) Show that d is a pseudo-metric on \mathcal{B} and hence defines a metric on the space $\bar{\mathcal{B}}$ of equivalence classes of sets in \mathcal{B} modulo null sets. Show that this metric is complete. Give an example to show that it is not compact.
- 2. Suppose x_n is a sequence of vectors in a Hilbert space \mathcal{H} which converges weakly to a limit x.
 - (a) Show that $||x_n||$ is bounded.
 - (b) Show that there is a subsequence $\{x_{n_i}\}$ such that $\frac{1}{N}\sum_{i=1}^N x_{n_i}$ converges in norm to x. Suggestion: show that without loss of generality one may take x=0. After x_{n_j} has been chosen for j < i choose x_{n_i} so that $\langle x_{n_i}, x_{n_j} \rangle < 2^{-i}$ for all j < i. Use this to estimate $\|\sum_{i=1}^N x_{n_i}\|$.
 - (c) Use part (b) to show that any convex norm-closed subset of \mathcal{H} is weakly closed.
- 3. Suppose α is any irrational number and define a transformation T from the 1-torus $\mathbb{T} = \mathbb{R}/\mathbb{Z} \simeq [0,1)$ to itself by $Tx = x + \alpha$. The addition is in \mathbb{R}/\mathbb{Z} , that is Tx is the fractional part of $x + \alpha$ as a transformation of [0,1). Let μ denote Lebesgue measure on \mathbb{T} . If $f \in L_2(\mu)$ and $f = f \circ T$ show that f is (almost everywhere) equal to a constant function. Hint: expand f in a Fourier series.
- 4. Show that any norm-closed subspace of a normed vector space is weakly closed. By considering $c_0(\mathbb{N}) \subset l_{\infty}(\mathbb{N})$ show that a norm-closed subspace of the dual of a normed vector space need not be closed in the weak-* toplogy.
- 5 (a) Let U, V denote domains in \mathbb{C} , and let $f: U \to V$ be a holomorphic mapping. Suppose that f is proper (i.e., $f^{-1}(K)$ is compact, for every compact subset K of V). Prove that f(U) = V.
 - (b) Is the assertion in (a) true if "holomorphic" is replaced by "continuous"? Explain.
- 6. Give an explicit description of the group of automorphisms of $\mathbb{C} \setminus \{0\}$ (i.e., the group of invertible holomorphic mappings from $\mathbb{C} \setminus \{0\}$ to itself).