Mathematics Department University of Toronto Analysis Examination September 2009 Duration 3 hours No aids allowed

1. Let f be an L^p function on \mathbb{R} . If p > 4/3, prove that

$$\lim_{t \to 0^+} \int_0^t x^{-1/4} f(x) dx = 0.$$

- 2. Let A, B be measurable subsets of [0, 1] with m(A) = m(B) = 1/4. For any real number t, let B_t denote the translation of B by t. In other words, $B_t = \{b+t\}_{b\in B}$. Prove that there exists $t \in \mathbb{R}$ so that $m(A \cap B_t) > \frac{1}{1000}$.
- 3. Give an example of a sequence of functions $f_i \in L^2(\mathbb{R})$ with $||f_i||_{L^2} = 1$, $supp(f_i) \subset [0,1]$, and with $f_i \to 0$ weakly in L^2 . Prove that your example has all the desired properties.
- 4. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a Schwartz function, and that $|\hat{f}(\omega)| \leq 1$ and $|\hat{f}(\omega)| \leq |\omega|^{-4}$. Prove that |f(3) f(1)| < 1000.

Work problem 5A or 5B, not both.

- 5A. Let A be an arc on $\partial \mathbb{D}$ and $f : \mathbb{D} \cup A \to \mathbb{C}$. (\mathbb{D} is the open unit disc in \mathbb{C} .) Assume
 - (a) f is continuous.
 - (b) The restriction of f to \mathbb{D} is holomorphic.
 - (c) The restriction of f to A is identically zero.
 - Prove that f is identically equal to zero.
- 5B. Does there exist a sequence of polynomials $P_n(z)$ such that $e^{P_n(z)}$ converges compact uniformly to z? (Prove that there exists such a sequence of polynomials or prove that there does not exist such a sequence of polynomials.)
 - 6. Suppose that $f : \mathbb{C} \to \mathbb{C}$ is entire and injective. Prove that f(z) = az + b for complex constants a, b with $a \neq 0$.