DEPARTMENT OF MATHEMATICS University of Toronto

Complex Analysis Exam (2 hours)

May 1999

No aids.

Do all questions.

Questions will be weighted equally.

- 1. (a) What is a normal family of analytic functions? What role does this concept play in the proof of the Riemann mapping theorem?
 - (b) State Picard's theoren on values omitted by entire functions. What role do analytic universal coverings play in its proof?
- **2.** Show that if f is a nonvanishing analytic function on a simply-connected domain $G \subset \mathbb{C}$ then a single-valued analytic branch of log f can be defined on G.
- **3.** Evaluate $\int_{-\infty}^{\infty} \frac{\cos \lambda x}{x^2 + 2x + 5} dx$ via residues $(\lambda > 0)$.
- **4.** Let G be a bounded domain in \mathbb{C} . Let f be a nonconstant analytic function on G, continuous on \overline{G} , with |f| = constant on ∂G . Show that f has at least one zero in G.
- **5.** (a) Determine as small an integer m as you can such that all zeros of $z^6 + z^5 + 100$ lie inside |z| = m.
 - (b) Determine as large an integer n as you can such that all zeros of $z^6 + z^5 + 100$ lie outside |z| = n.
- **6.** (a) Find the image of the unit disc under the mapping $f(z) = \frac{1}{2} \log \frac{1+z}{1-z}$.
 - (b) Show that $|f(z)| \le \frac{1}{2} \log \frac{1+|z|}{1-|z|}$.