DEPARTMENT OF MATHEMATICS University of Toronto

Complex Analysis Exam (2 hours)

September 7, 1999

No aids.

Do all questions.

Questions will be weighted equally.

1. Suppose that f is analytic in $|z| < R_0$ and that $|a| < R < R_0$. Evaluate

$$\int_{\gamma} \frac{(R^2 - |a|^2)f(z)}{(z-a)(R^2 - z\bar{a})} dz$$

where γ is the circle |z|=R transversed counterclockwise. Hence prove that if 0 < r < R

$$f(re^{i\theta}) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{f(Re^{i\phi})d\phi}{R^2 - 2rR\cos(\theta - \phi) + r^2}$$

(Poisson's formula).

- **2.** (a) Show that if $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{n} \right)$ then f is analytic in the whole plane minus the points $0, 1, 2, \ldots$
 - (b) Find $f^{(k)}(z)$. (Justify.)
- **3.** Find the image of the upper half plane under the mapping $w = \frac{1-z^{\alpha}}{1+z^{\alpha}}$ where $0 < \alpha < 1$ and z^{α} has its principal value.
- **4.** Suppose f is entire and $|f(z)| \leq C_1 + C_2|z|$. What can you say about the form of f? Give a proof.