DEPARTMENT OF MATHEMATICS University of Toronto

Complex Analysis Exam (2 hours)

May 1, 2000

No aids.

Do all questions.

The value of each is indicated. Total =80

1. (a) [6 marks]

Evaluate $\int_{\gamma} \frac{zdz}{z^4-1}$ where γ is the circle |z-ia|=1 traversed once counterclockwise and a>1.

(b) **[6 marks]**

Evaluate $\int_{\gamma} \frac{ze^z}{(z-b)^3} dz$ where γ is the unit circle traversed once counterclockwise and $|b| \neq 1$.

(c) [8 marks]

Let U be the open unit disc, i.e. $U = \{z \in \mathbb{C} \mid |z| < 1\}$. Is $U \setminus \{0\}$ biholomorphic to $\mathbb{C} \setminus \{0\}$? Explain.

2. [20 marks]

A family \mathcal{F} of holomorphic functions on a domain Ω is said to be normal if any sequence of functions in \mathcal{F} contains a subsequence which converges uniformly on compact subsets of Ω . Suppose that the family \mathcal{F} fails to be normal. Show that there exists a point $z_0 \in \Omega$ such that \mathcal{F} is not normal in any neighbourhood of Ω .

Hint: a compactness argument.

3. [20 marks]

Suppose that f and g are meromorphic in \mathbb{C} . Suppose that γ is a smooth closed curve in \mathbb{C} (not necessarily simple) such that neither f nor g has any singularities on γ . Suppose also that |g| < |f| on γ . Let

$$\varphi(t) = \int_{\gamma} \frac{f'(z) + tg'(z)}{f(z) + tg(z)} dz \qquad 0 \le t \le 1.$$

Show that φ is constant.

4. [20 marks]

Evaluate $\int_0^\infty \frac{x^\alpha}{x^2+a^2} dx$ via residues where $-1 < \alpha < 1$ and a > 0.