DEPARTMENT OF MATHEMATICS University of Toronto

Complex Analysis Exam (2 hours)

September 5, 2000

No aids.

Do all questions.

Questions will be weighted equally.

1. Suppose $\alpha \in \mathbb{C}$, $|\alpha| \neq 1$. Compute

$$\int_0^{2\pi} \frac{d\theta}{1 - 2\alpha\cos\theta + \alpha^2}$$

by integrating $(z - \alpha)^{-1}(z - \frac{1}{\alpha})^{-1}$ around the unit circle.

- 2. Show that the set of biholomorphic maps from the upper half plane onto itself consists precisely of the set of linear fractional transformations of the form $\frac{az+b}{az+d}$ where $a, b, c, d \in \mathbb{R}$ (after cancellation of a common factor) and ad bc > 0.
- **3.** How many zeros does $z^5 + 3z^4 + 12z^3 + 2z 1$ have in the annulus 1 < |z| < 2? Explain.
- **4.** Suppose that f is a holomorphic function in a domain $\Omega \subset \mathbb{C}$. Suppose that f has a zero of order k at a point $z_0 \in \Omega$. Show that there is a neighbourhood U of z_0 and a neighbourhood V of $f(z_0)$ such that if $w_0 \in V \setminus \{f(z_0)\}$, the equation $f(z) w_0 = 0$ has k distinct roots in $U \setminus \{z_0\}$.