DEPARTMENT OF MATHEMATICS University of Toronto

Complex Analysis Exam $(1\frac{1}{2} \text{ hours})$

Tuesday, September 2, 2003, 1-2:30 p.m.

No aids.

Do all questions.

Questions will be weighted equally.

- 1. (a) State Schwarz's Lemma.
 - (b) Prove that every 1 1 analytic mapping from $\Delta := \{z \mid |z| < 1\}$ onto Δ is of the form

$$f(z) = e^{i\theta} \left(\frac{z - \alpha}{1 - \bar{\alpha}z} \right)$$
 for some $\alpha \in \Delta$.

2. (a) Define normal family (of analytic functions) and state a general theorem which gives a criterion for a family of analytic functions to be normal.

(b) Consider
$$\left\{ f \mid f = \sum_{n=0}^{\infty} a_n z^n \text{ with } |a_n| \leq n \text{ for } n = 1, 2, \dots \right\}$$
.

Using (a) above (or otherwise) show that this is a normal family of analytic functions.

3. Let f be analytic on Δ and 1-1 on $\Delta^*:=\{z\mid 0<|z|<1\}$. Prove that f is 1-1 on Δ .