DEPARTMENT OF MATHEMATICS University of Toronto

Complex Analysis Exam $(1\frac{1}{2} \text{ hours})$

Friday, May 7, 2004, 1-2:30 p.m.

No aids.

Do all questions.

Questions will be weighted equally.

- 1. (a) Define normal family of analytic functions.
 - (b) Let $\mathcal{F} = \{f \mid f \text{ is holomorphic in } |z| < 1 \text{ and } |f^{(n)}(0)| \le n! \text{ for } n = 0, 1, 2, \ldots\}.$ Prove that \mathcal{F} is a normal family.
- 2. (a) State Schwarz's Lemma.
 - (b) Let f be a 1–1 analytic mapping from the unit disc $\Delta = \{z \mid |z| < 1\}$ onto itself such that f(0) = 0. Prove that f is of the form $f(z) = e^{i\theta}z$ for some θ .
- **3.** Let Ω_1 , Ω_2 be connected open subsets of $\mathbb C$ and let $f: \Omega_1 \to \Omega_2$ be analytic. For v harmonic on Ω_2 , prove that $v \circ f$ is harmonic on Ω_1 .