University of Toronto Department of Mathematics Complex Analysis Examination

Monday, May 2, 2005, 1-2:30 p.m. Duration 1 hour, 30 minutes

No aids allowed.

All questions are equal in value.

- 1. Let $\{f_n\}$ denote a sequence of holomorphic functions on a domain $\Omega \subset \mathbb{C}$, such that $\{f_n\}$ is bounded uniformly on compact subsets of Ω . Suppose that every subsequence $\{f_{n_k}\}$ which converges uniformly on compact sets, converges to the *same* holomorphic function f on Ω . Prove that $\{f_n\}$ converges to f uniformly on compact subsets of Ω .
- 2. Let f denote a holomorphic mapping of the unit disk to itself which in not the identity mapping. Show that f can have at most one fixed point.
- 3. Let f denote an entire function (which is not identically zero). Let n be a natural number. Prove that the following are equivalent:
 - (a) There exists an entire function g such that $f = g^n$.
 - (b) Every zero of f has order divisible by n.