University of Toronto Faculty of Arts and Sciences April-May 2009 Examinations MAT454H1S/1001H1S 3 hours No Aids Allowed Final Exam

April 30, 2009

C. Pugh

Problems 1 and 2 are worth ten points, the others are worth 20 points.

As usual, \mathbb{C} is the complex plane, \mathbb{C} is the extended complex plane (the Riemann sphere), \mathbb{H} is the open upper half plane, \mathbb{D} is the open unit disc, and \mathbb{R} is the real number line.

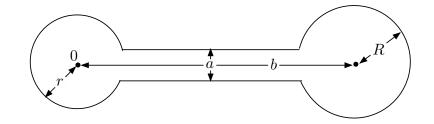
- (1) Answer True or False. +2 points for correct answer, -2 points for incorrect answer, 0 points for no answer.
 - (a) Every Mobius transformation $M : \mathbb{D} \to \mathbb{D}$ has a fixed point in \mathbb{D} .
 - (b) The family of all holomorphic functions $f : \mathbb{D} \to \mathbb{H}$ such that f(0) = i is normal.
 - (c) There is an entire function $f : \mathbb{C} \to \mathbb{C}$ such that for all $x \in \mathbb{R}$, $\left| f(x) - x^2 |\sin x^2| \right| < e^{-|x|^2}.$
 - (d) If $f : \Omega \to \mathbb{C}$ is holomorphic and injective then the area of $f(\Omega)$ is $\int_{\Omega} |f'(z)|^2 dx dy$ where z = x + iy.
 - (e) Every bounded, injective holomorphic function $f: \mathbb{D} \to \mathbb{C}$ extends continuously to the closed disc.
- (2) Use complex analysis to calculate the integral

$$\int_0^\infty \frac{\sqrt{x}}{x^2 + 1} \, dx \; .$$

- (3) Find a succession of specific conformal transformations that convert the lens shaped open set $\{z : |z| < 1 \text{ and } |z 1| < 1\}$ to \mathbb{D} .
- (4) State the Harnack Inequality about positive harmonic functions, and use it (or not) to prove that every nonconstant harmonic function $u : \mathbb{C} \to \mathbb{R}$ is neither bounded below nor bounded above, but rather has $u(\mathbb{C}) = \mathbb{R}$.
- (5) Prove that except for the identity map, no holomorphic $f : \mathbb{D} \to \mathbb{D}$ has more than one fixed point.
- (6) Suppose $0 \le r < R \le \infty$. Find (with proof) the automorphism group of the annulus $A = \{z : r < |z| < R\}$.

Extra Credit. (Note: I give little *partial* credit on Extra Credit problems.)

- (1) Prove or disprove that there exists an injective holomorphic function $f : \mathbb{D} \to \mathbb{C}$ such that $f(\mathbb{D})$ is open, dense, and has area < 1/100.
- (2) Consider the Riemann map $f : \mathbb{D} \to \Omega$ where Ω is the dumbbell region with parameters a, b, r, R shown in the figure and f(0) = 0, f'(0) > 0. To what limit, if any, does f converge as
 - (a) $a \to 0$ and b, r, R are constant.
 - (b) $b \to \infty$ and a, r, R are constant.
 - (c) $b \to \infty$ and ab, r, R are constant.
 - (d) Other distortions such as $a \to 0$ and aR, b, r are constant, etc.



Justify your answers.