DEPARTMENT OF MATHEMATICS University of Toronto

Real Analysis Exam (2 hours)

Monday, May 6, 2002, 1-3 p.m.

No aids.

Do all questions.

Questions will be weighted equally.

- 1. Prove or disprove (i.e., find a counterexample) each of the following statements:
 - (a) if $f \in L^1([0,1])$ then $\lim_{n \to \infty} \int_0^1 f(x) \cos n\pi x dx = 0$.
 - (b) $L^p(\mathbb{R}) \subseteq L^q(\mathbb{R})$ for $1 \le p < q$.
 - (c) Let $\{f_n\}$ be a sequence of measurable functions on [0,1] that converges pointwise to zero. Then $\lim_{n\to\infty}\int_0^1 f_n dx = 0$ whenever $x|f_n(x)| \leq \sqrt{x}$ for all x>0.
- **2.** (a) State the Riesz representation theorem for $L^p(\mu)$ spaces with $1 \le p < \infty$. Here μ denotes a positive measure on a measure space X.
 - (b) Let f be a measurable function such that the product fg is in $L^1(\mu)$ for each $g \in L^q(\mu)$ with $\frac{1}{p} + \frac{1}{q} = 1$. Show that $f \in L^p(\mu)$.
- **3.** Let X denote a Banach space and let x_0 be a non zero element in X. Show that there exists a bounded linear functional f such that $f(x_0) = ||x_0||$ and ||f|| = 1.

Also show that for any distinct points x and y in X there exists a bounded linear functional f such that $f(x) \neq f(y)$.

- 4. Let H denote a real Hilbert space and let M be a linear subspace.
 - (a) Give an example of H and M in which M is not closed in H.
 - (b) Suppose that M is a closed subspace of H and suppose that x_0 is a point in H not in M. Prove that

$$Minimum\{||x - x_0|| : x \in M\} = Maximum\{\langle x, x_0 \rangle : x \in M^{\perp}, ||x|| = 1\}.$$

Here, $\langle \ , \ \rangle$ denotes the inner product on H, and M^{\perp} denotes the orthogonal complement of M.