DEPARTMENT OF MATHEMATICS University of Toronto

Real Analysis Exam (2 hours)

Tuesday, September 3, 2002, 1–3 p.m.

No aids.

Do all questions.

Questions will be weighted equally.

- 1. Prove or find a counterexample for each of the following statements. Here, all integrals are defined by the Lebesgue measure m on the real line.
 - (a) If A is a measurable set then there exists a sequence of open sets $U_n \subseteq A$ such that $m(A) = \lim_{n \to \infty} m(U_n)$.
 - (b) If $\int_{-1}^{1} x^n f(x) dx = 0$ for each $n = 0, 1, \ldots$ where f is a bounded and measurable function on [-1, 1] then f = 0 a.e.
 - (c) $f(b) f(a) = \int_a^b f'(x) dx$ for any continuous and increasing function f.
- **2.** (a) Prove that $f \in L^q(\mathbb{R})$ for any q such that $p_1 \leq q \leq p_2$ whenever $f \in L^{p_1}(\mathbb{R}) \cap L^{p_2}(\mathbb{R})$. Here, $0 < p_1 < p_2$ and the L^p spaces are relative to the Lebesgue measure on \mathbb{R} .
 - (b) Show that $L^p(\mathbb{R})$ is not contained in $L^q(\mathbb{R})$ whenever $p \neq q$.

Which of the above statements becomes false if the real line is replaced by a finite interval [a, b]. Explain.

- **3.** Let C[0,1] denote the space of continuous functions on [0,1] equipped with the supnorm, and let K be a continuous function on $[0,1] \times [0,1]$. Suppose that $L: C[0,1] \to C[0,1]$ is defined by Lf = g if and only if $g(y) = \int_0^1 K(x,y) f(x) dx$ for all $y \in [0,1]$. Prove that $\{Lf_n\}$ contains a convergent subsequence in C[0,1] for any bounded sequence $\{f_n\}$ in C[0,1].
- **4.** Find the maximum value of $\int_{-1}^{1} x^5 f(x) dx$ among all Lebesgue measurable functions f on [-1,1] such that $\int_{-1}^{1} f^2 dx = 1$, and $\int_{-1}^{1} f(x) dx = \int_{-1}^{1} x f(x) dx = \int_{-1}^{1} x^2 f(x) dx = 0$.