REAL ANALYSIS PhD Comprehensive Exam September 7, 2004, 2–4 p.m.

All problems have equal weight.

Notations. Here m denotes the Lebesgue measure on the real line. For any subset of real numbers A and any real number x, A+x designates the translate $\{a+x:a\in A\}$. The symmetric difference of sets $A\cup B-A\cap B$ will be denoted by $A\Delta B$.

1. Show that

$$\lim_{n\to\infty} m((A+\frac{1}{n})\Delta A) = 0$$

for each Lebesgue measurable set A of finite measure. Also show by an example that the above may fail for sets of infinite measure.

- 2. Let X be a measurable subset of real numbers. Recall that $L^p(X) = \{f : \int_X |f|^p dm < \infty\}$ for each real $p \in [1, \infty)$.
 - (a) Show that $L^p(X) \subseteq L^r(X)$ whenever $m(X) < \infty$ and $1 \le r < p$.
 - (b) Assume that $m(X) = \infty$. Show that $L^p(X)$ is not a subspace of $L^r(X)$ for $r \neq p$.
- 3. Let K(x,y) denote a continuous function on the square $[0,1] \times [0,1]$. For each f in $L^2([0,1])$ let Tf be the function on the interval [0,1] defined by

$$Tf(x) = \int_0^1 K(x, y) f(y) \, dy$$

- (a) Show that Tf is continuous for each f.
- (b) If f_n denotes a sequence of functions in the unit ball in $L^2([0,1])$ show that the sequence of functions Tf_n contains a uniformly convergent subsequence.
- 4. Suppose that g is a real measurable function on the interval [0,1] such that

$$\int_0^1 g(x)f(x)\,dx < \infty$$

for each real measurable function f such that $\int_0^1 f^2(x) dx < \infty$. Show that $\int_0^1 g^2(x) dx < \infty$.