FACULTY OF ARTS AND SCIENCE University of Toronto

FINAL EXAMINATIONS, APRIL 30, 2007

Mat457Y1Y/1000YY Real Analysis II

Examiner: Professor G. Forni Duration: 3 hours

No calculators or other aids are allowed.

Attempt ALL questions. Total: 100 points. All questions are of equal value.

(I) Let m be the Lebesgue measure on [0,1].

(a) Does there exists a sequence of measurable functions (f_n) in $L^1([0,1],m)$ such that $f_n(x) \to f(x)$ (as $n \to +\infty$) for *m*-almost all $x \in X$ and $\int_{[0,1]} (f_n - f) dm \to 0$ but $\int_{[0,1]} |f_n - f| dm = 1$ for all $n \in \mathbb{N}$?

(b) For which $\alpha > 0$ does there exists a sequence (E_n) of Borel subsets of [0,1] such that $m(E_n) \leq 1/n^{\alpha}$ for all $n \in \mathbf{N} \setminus \{0\}$ and

$$m\{x \in [0,1] \mid \text{the set } \{n \in \mathbf{N} | x \in E_n\} \text{ is infinite}\} > 0?$$

(II) For any $p \in [1, +\infty)$, let B_p be the closed unit ball in $L^p[1, +\infty)$, that is, the set of functions $f \in L^p[1, +\infty)$ such that $||f||_p \leq 1$. Let

$$I(f) := \int_{[1,+\infty)} \frac{f(x)}{x} dx$$
 and $M_p := \sup\{I(f) | f \in B_p\}.$

- (a) Find the value of M_p for all $p \in [1, +\infty)$.
- (b) For what $p \in [1, +\infty)$, if any, there exists $f \in B_p$ such that $I(f) = M_p$?

(III)

(a) Let C([0,1]) be the space of continuous functions on the closed interval [0,1]. Prove that there is no norm on C([0,1]) such that the convergence in norm is equivalent to the point-wise convergence in C([0,1]).

Page 1 of 2

(b) Prove that there is no norm on $L^{\infty}([0,1])$ such that the convergence in norm is equivalent to the convergence in measure in $L^{\infty}([0,1])$.

(IV) Let $\ell^1(\mathbf{Z})$ be the space of summable bi-infinite sequence of complex numbers and let $C(S^1)$ be the space of continuous functions on the circle $S^1 = \mathbf{R}/\mathbf{Z}$, that is, the space of periodic functions (of period 1) on \mathbf{R} , endowed with the uniform norm.

(a) Prove that the map $T: \ell^1(\mathbf{Z}) \to C(S^1)$ defined as

$$T((a_n)) = \sum_{n \in \mathbf{Z}} a_n \exp(2\pi i n t), \quad (a_n) \in \ell^1(\mathbf{Z}),$$

is a bounded linear operator.

(b) Prove that there exists a function $f \in C(S^1)$ such that the sequence (f_n) of its Fourier coefficients, defined as

$$f_n = \int_{S^1} f(t) \exp(-2\pi i n t) dt, \quad n \in \mathbf{Z},$$

does not belong to $\ell^1(\mathbf{Z})$.

(V) For any complex measure μ on the circle $S^1 = \mathbf{R}/\mathbf{Z}$, let

$$\hat{\mu}(n) = \int_{S^1} \exp(-2\pi i n t) \, d\mu(t) \,,$$

denote its Fourier coefficients.

(a) Prove that, if $\,\hat{\mu}(n)\to 0\,$ as $\,n\to+\infty\,,$ then for every bounded Borel function $\,f\,$ on $\,S^1$

$$\int_{S^1} \exp(-2\pi i n t) f(t) d\mu(t) \to 0 \quad \text{as } n \to +\infty .$$

(b) Prove that, if $\hat{\mu}(n) \to 0$ as $n \to +\infty$, then $|\hat{\mu}|(n) \to 0$ as $n \to +\infty$ (where $|\mu|$ denotes the total variation of μ) and that, as a consequence, $\hat{\mu}(n) \to 0$ as $n \to -\infty$.

Page 2 of 2