DEPARTMENT OF MATHEMATICS

University of Toronto

Topology Exam (3 hours)

January 1995

- 1. Let X be connected and let C be a closed subset such that the boundary of C is a single point. Show that C is connected.
- **2.** Let X be the *comb space* defined by

$$X = \Big(\bigcup_{n=1}^{\infty} \big\{ (\frac{1}{n}, y) \mid 0 \le y \le 1 \big\} \Big) \cup \big\{ (0, y) \mid 0 \le y \le 1 \big\} \cup \big\{ (x, 0) \mid 0 \le x \le 1 \big\} \ \subset \ \mathbb{R}^2 \ .$$
 Let $I = \big\{ (0, y) \mid 0 \le y \le 1 \big\} \subset X$.

- (i) Sketch X.
- (ii) Define deformation retract and strong deformation retract.
- (iii) Show that I is a deformation retract of X.
- (iv) Show that I is not a strong deformation retract of X.
- **3.** (i) Suppose $n \geq 2$. Does there exist a continuous map $f: S^n \to S^1$ which is not homotopic to a constant?
 - (ii) Suppose $n \geq 2$. Does there exist a continuous map $f: \mathbb{R}P^n \to S^1$ which is not homotopic to a constant?
 - (iii) Let $T=S^1\times S^1$ be the torus. Does there exist a continuous map $f:T\to S^1$ which is not homotopic to a constant?

In each case, carefully justify your answer.

- **4.** Let $p: E \to X$ be a covering map and let $f: Y \to X$ be any continuous map. Let $P = \{(y, e) \in Y \times E \mid fy = pe\}$ and define $\pi: P \to Y$ by $\pi(y, e) = y$. Show that π is a covering map.
- 5. Let $f: S^{n-1} \to Y$ be continuous (n > 1) and let $Y_f = D^n \cup_f Y$. Show that:
- (i) $H_m(Y) \cong H_m(Y_f)$ for $m \neq n, n-1$.
- (ii) There is an exact sequence

$$0 \ \to \ H_n(Y) \ \to \ H_n(Y_f) \ \to \ H_{n-1}(S^{n-1}) \ \to \ H_{n-1}(Y) \ \to \ H_{n-1}(Y_f) \ \to \ 0 \ .$$

6. Compute $H_*(S^n)$.