DEPARTMENT OF MATHEMATICS University of Toronto

Topology Exam (3 hours)

September 1995

- 1. (a) Define the "quotient topology".
 - (b) Consider the system of differential equations:

$$\begin{array}{ll} \dot{x} & = & x, \\ \dot{y} & = & -y, \end{array}$$

$$(x,y)\in\mathbb{R}^2$$
 .

The general solution is $x = ae^t$, $y = be^{-t}$.

The points on any orbit (solution curve) satisfy xy = c for some c. The orbits are drawn below.

Page 1 of 2

There are 9 possible types of orbits, given explicitly as follows:

$$\begin{array}{ll} \text{for } c>0 & T_1(c) = \{(x,y) \in \mathbb{R}^2 \mid xy = c \text{ and } x>0, \ y>0\} \\ T_2(c) = \{(x,y) \in \mathbb{R}^2 \mid xy = c \text{ and } x<0, \ y<0\} \\ \text{for } c<0 & T_3(c) = \{(x,y) \in \mathbb{R}^2 \mid xy = c \text{ and } x>0, \ y<0\} \\ T_4(c) = \{(x,y) \in \mathbb{R}^2 \mid xy = c \text{ and } x<0, \ y>0\} \\ \text{for } c=0 & T_5 = \{(x,0) \in \mathbb{R}^2 \mid x>0\} \\ T_6 = \{(0,y) \in \mathbb{R}^2 \mid y>0\} \\ T_7 = \{(x,0) \in \mathbb{R}^2 \mid x<0\} \\ T_8 = \{(0,y) \in \mathbb{R}^2 \mid y<0\} \\ T_9 = \{(0,0)\}. \end{array}$$

The orbit space \mathcal{M} is defined as $\mathcal{M} = \frac{\mathbb{R}^2}{\sim}$ with the quotient topology where $(x,y) \sim (x',y')$ if they lie on the same orbit.

Describe \mathcal{M} as a topological space; that is, give a basis for the open sets. Is \mathcal{M} Hausdorff? Why or why not?

- 2. Let X be a path connected space. Suppose that there exists a continuous map m: $X \times X \to X$ and a point $e \in X$ such that m(e,x) = m(x,e) = x for all $x \in X$. Show that the fundamental group $\pi_1(X,e)$ is abelian.
- 3. (a) Define what it means for a topological space to be "normal".
 - (b) State Urysohn's Lemma.
 - (c) Prove that a compact Hausdorff space is normal.
- 4. Let $sq: S^1 \to S^1$ be the map $z \mapsto z^2$ where the circle is regarded as the unit ball of \mathbb{C} and the multiplication is that from \mathbb{C} . Compute the group homomorphism $sq_{\sharp}: \pi_1(S^1) \to \pi_1(S^1)$.
- 5. Let M be an n-dimensional path connected topological manifold (so that each point has a neighbourhood which is homeomorphic to \mathbb{R}^n), and let $x \in M$. Compute the relative homology $H_q(M, M x)$ for all q.
- 6. Let $0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$ be a short exact sequence of chain complexes. Define the connecting homomorphism $\Delta: H_n(C) \to H_{n-1}(A)$. Show that the sequence $H_n(B) \xrightarrow{j} H_n(C) \xrightarrow{\Delta} H_{n-1}(A)$ is exact at $H_n(C)$.