DEPARTMENT OF MATHEMATICS University of Toronto

Topology Exam (3 hours)

Monday, September 8, 2003, 1-4 p.m.

Questions have equal value, but different parts of a question may have different weights.

In any question, you may use without proof your knowledge of the homology groups $H_{\bullet}(S^k;\Gamma)$ for any integer k and any coefficient group Γ .

- 1. The *finite topology* on a set X is the topology for which the non-empty open sets are sets of the form $U = X \setminus F$ with F a finite subset.
 - (a) Define the terms "Hausdorff" and "separable".
 - (b) Prove or disprove:
 - (i) The finite topology on $X = \mathbb{R}$ is Hausdorff.
 - (ii) The finite topology on $X = \mathbb{R}$ is separable.
 - (iii) The identity map from \mathbb{R} , with the standard topology, to \mathbb{R} , with the finite topology, is continuous.
- **2.** Let X be the space formed by the edges of the cube $[0,1]^3 \subset \mathbb{R}^3$. Calculate the fundamental group $\pi_1(X)$.
- **3.** Let X be the wedge product of the projective plane with the 2-sphere, $X = S^2 \vee \mathbb{R}P^2$.
 - (a) Describe the universal covering space \tilde{X} of X.
 - (b) What is the definition of "deck" (or "covering") transformation?
 - (c) For the above space X, describe the group of deck transformations, and explain how it acts on \tilde{X} .
- **4.** Let Γ be an Abelian group, and X a topological space.
 - (a) State the Mayer-Vietoris theorem for $H_{\bullet}(X;\Gamma)$, corresponding to a covering of X by two open subsets $U,V\subset X$.

- (b) Calculate the homology groups $H_{\bullet}(\mathbb{R}P^2;\Gamma)$ for the following two cases:
 - (i) $\Gamma = \mathbb{Z}_3$
 - (ii) $\Gamma = \mathbb{Z}_4$

Hint: Identify $\mathbb{R}P^2 = D^2/\sim$ (antipodal identification on the boundary ∂D^2), and take $U,\ V$ to be the images of $D^2\backslash\partial D^2,\ D^2\backslash\{0\}$ under the quotient map.

- 5. Calculate the homology groups of the space $X = S^2 \times S^1$ with coefficients in \mathbb{Z} .
- **6.** (a) State the Poincaré duality theorem for the cohomology groups of compact oriented manifolds.
 - (b) Let $f: M \to N$ be a continuous map between compact oriented manifolds of dimension n, and assume that the induced map $f^*: H^n(N) \to H^n(M)$ is an ismorphism. Show that $f^*: H^p(N) \to H^p(M)$ is injective for all p.