DEPARTMENT OF MATHEMATICS University of Toronto

Topology Exam (3 hours)

Monday, September 13, 2004, 1-4 PM

The following 6 questions have equal value, but different parts of a question may have different weights.

- 1. (a) Let X be a compact metric space and let $\{U_{\alpha} : \alpha \in A\}$ be an open cover of X. Show that there exists $\epsilon > 0$ such that for every $x \in X$ there exists $\alpha \in A$ such that the ϵ -ball centred at X is contained in U_{α} . (ϵ is called a *Lebesgue number* for the covering.)
 - (b) Prove that any continuous function on a compact metric space is uniformly continuous.
- 2. A topological group is a group G which is also a topological space, so that the multiplication map $m: G \times G \to G$ and the inverse map $(x \mapsto x^{-1}): (G \{e\}) \to (G \{e\})$ are both continuous. Show that the fundamental group of a topological group G is Abelian (even if G is not!).
- 3. Let X be the comb space defined by

$$X = \left(\bigcup_{n=1}^{\infty} \left\{ \left(\frac{1}{n}, y\right) : 0 \le y \le 1 \right\} \right) \cup \{(0, y) : 0 \le y \le 1\} \cup \{(x, 0) : 0 \le x \le 1\} \subset \mathbb{R}^2.$$

Let
$$I = \{(0, y) : 0 \le y \le 1\} \subset X$$
.

- (a) Sketch X.
- (b) Define deformation retract and strong deformation retract.
- (c) Show that I is a deformation retract of X.
- (d) Show that I is not a strong deformation retract of X.

- 4. Let $X = S^2 \cup C$ where $C = \{(0, 0, z) : -1 \le z \le 1\}$ is the chord joining the south pole to the north pole.
 - (a) Describe the universal covering of X (possibly using a picture to help with the description).
 - (b) Compute $\pi_1(X)$.
- 5. Let S be the 2-dimensional skeleton of the four dimensional cube:

$$S = \{(x_i) \in [0, 1]^4 \colon \text{for at least two i's, $x_i = 0$ or $x_i = 1$} \}$$

- (a) Compute the Euler characteristic of S.
- (b) Compute all homology groups of S.
- 6. (a) Prove: there is no continuous function $r: D^n \to S^{n-1}$ from the *n*-dimensional unit ball to its boundary, whose restriction to the boundary is the identity.
 - (b) Prove: every continuous function $f: D^n \to D^n$ has a fixed point.

Good Luck!