DEPARTMENT OF MATHEMATICS University of Toronto

Topology Exam (3 hours)

Friday, May 6, 2005, 1-4 PM

- **1.** Let $X_1 \subset X_2 \subset \cdots$ be a sequence of Hausdorff spaces where X_i is a closed subspace of X_{i+1} for each i. Let $X = \bigcup_{i=1}^{\infty} X_i$. Define the coherent topology on X by $U \subset X$ is open $\Leftrightarrow U \cap X_i$ is open in $X_i \ \forall i$.
 - a) Verify that this is a topology.
 - b) Show that X_i is a subspace of X in this topology.
 - c) Suppose that each X_i is normal; state Tietze's extension theorem and use it to show that X is normal.
- **2.** a) Suppose $n \geq 2$. Does there exist a continuous map $f: S^n \to S^1$ which is not homotopic to a constant?
 - b) Suppose $n \geq 2$. Does there exist a continuous map $f: \mathbf{R}P^n \to S^1$ which is not homotopic to a constant?
 - c) Let $T = S^1 \times S^1$ be the torus. Does there exist a continuous map $f: T \to S^1$ which is not homotopic to a constant?

In each case, carefully justify your answer.

- 3. a) State $\pi_1(S^1)$. Say briefly what goes into showing this. (A proof is not required.)
 - b) Let sq: $S^1 \to S^1$ be the map $z \mapsto z^2$ where the circle is regarded as the unit ball of \mathbf{C} and the multiplication is that from \mathbf{C} . Compute the group homomorphism $\mathrm{sq}_{\sharp} \colon \pi_1(S^1) \to \pi_1(S^1)$.
- **4.** a) Give the definition of a strong deformation retraction of a topological space X.
 - b) Find the first fundamental group of the following spaces. (Give a brief justification of your answer.) Which of these groups are abelian?
 - (i) S^2 with two points removed,
 - (ii) Klein bottle with a point removed,
 - (iii) Torus with two points removed.
- **5.** Calculate $H_*(\vee_k S^n, \mathbf{Z})$ for $k, n \geq 1$. (You may take $H_*(S^n)$ as known.)

- **6.** a) Let $f: S^n \to S^n$ be a continuous map, $n \ge 1$. State the definition of the degree of this map.
 - b) What is the degree of the antipodal map

$$a: S^n \to S^n, \ a(x) = -x,$$

- and what is the degree of the identity map? (Give a brief justification of your answer.)
- c) Show that if $h: S^n \to S^n$ has degree different from that of the antipodal map, then h has a fixed point.