DEPARTMENT OF MATHEMATICS University of Toronto

Topology Exam (3 hours)

Friday, September 8, 2006, 1-4 PM

The 6 questions on the other side of this page have equal value, but different parts of a question may have different weights.

Good Luck!

- 1. Let X and Y be metric spaces and let $f: X \to Y$ be a function.
 - (a) Define "f is uniformly continuous".
 - (b) Prove that if X is compact and f is continuous, then f is uniformly continuous.
- 2. Let X be a Hausdorff topological space.
 - (a) Define "X is completely regular $(T_{3\frac{1}{2}})$ ".
 - (b) Prove that X is completely regular if and only if it can be embedded in a cube (a "cube" is a product space of the form $[0, 1]^A$ for some set A).

Hint and Warning. This question is a lemma often used within one of the standard constructions of the Stone-Čech compactification βX . Thus you may search your memories about βX , but of course, you cannot use βX , for logically it comes later.

- 3. Let X be a group with product \star .
 - (a) Define "X is a topological group".
 - (b) If $\gamma_1 : I \to X$ and $\gamma_2 : I \to X$ are paths in X, define $\gamma_1 \star \gamma_2 : I \to X$ by $(\gamma_1 \star \gamma_2)(t) = \gamma_1(t) \star \gamma_2(t)$. Show that $[\gamma_1 \star \gamma_2] = [\gamma_1][\gamma_2]$ in $\pi_1(X)$.
 - (c) Show that $\pi_1(X)$ is Abelian.
- (a) Let p: X → B be covering map and let f: Y → B be a continuous map. State in full the lifting theorem, which gives necessary and sufficient conditions for the existence and uniqueness of a lift of f to a map f̃: Y → X such that f = p ∘ f̃.
 - (b) Let $p : \mathbb{R} \to S^1$ be given by $p(t) = e^{it}$. Is it true that every map $f : \mathbb{RP}^2 \to S^1$ can be lifted to a map $\tilde{f} : \mathbb{RP}^2 \to \mathbb{R}$ such that $f = p \circ \tilde{f}$? Justify your answer.
- 5. A topological space X_f is obtained from a topological space X by gluing to X an *n*dimensional cell e^n using a continuous gluing map $f : \partial e^n = S^{n-1} \to X$, where $n \ge 2$. Show that
 - (a) $H_m(X) \cong H_m(X_f)$ for $m \neq n, n-1$.
 - (b) There is an exact sequence $0 \to H_n(X) \to H_n(X_f) \to H_{n-1}(S^{n-1}) \to H_{n-1}(X) \to H_{n-1}(X_f) \to 0.$
- 6. (a) Let $f, g: S^n \to S^n$ be continuous maps such that $f(x) \neq g(x)$ for all $x \in S^n$. Show that $f \simeq a \circ g$, where a is the antipodal map.
 - (b) Prove that any continuous map $f: S^{2n} \to S^{2n}$ either has a fixed point or there is a point x with f(x) = -x.
 - (c) Prove that any continuous map $f : \mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$ has a fixed point.

Good Luck!